前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >kmalloc分配物理内存与高端内存映射--Linux内存管理(十八)

kmalloc分配物理内存与高端内存映射--Linux内存管理(十八)

作者头像
233333
发布2019-01-02 13:09:02
6.5K0
发布2019-01-02 13:09:02
举报
文章被收录于专栏:linux驱动个人学习

1 前景回顾

1.1 内核映射区

尽管vmalloc函数族可用于从高端内存域向内核映射页帧(这些在内核空间中通常是无法直接看到的), 但这并不是这些函数的实际用途.

重要的是强调以下事实 : 内核提供了其他函数用于将ZONE_HIGHMEM页帧显式映射到内核空间, 这些函数与vmalloc机制无关. 因此, 这就造成了混乱.

而在高端内存的页不能永久地映射到内核地址空间. 因此, 通过alloc_pages()函数以__GFP_HIGHMEM标志获得的内存页就不可能有逻辑地址.

在x86_32体系结构总, 高于896MB的所有物理内存的范围大都是高端内存, 它并不会永久地或自动映射到内核地址空间, 尽管X86处理器能够寻址物理RAM的范围达到4GB(启用PAE可以寻址64GB), 一旦这些页被分配, 就必须映射到内核的逻辑地址空间上. 在x86_32上, 高端地址的页被映射到内核地址空间(即虚拟地址空间的3GB~4GB)

内核地址空间的最后128 MiB用于何种用途呢?

该部分有3个用途。

  1. 虚拟内存中连续、但物理内存中不连续的内存区,可以在vmalloc区域分配. 该机制通常用于用户过程, 内核自身会试图尽力避免非连续的物理地址。内核通常会成功,因为大部分大的内存块都在启动时分配给内核,那时内存的碎片尚不严重。但在已经运行了很长时间的系统上, 在内核需要物理内存时, 就可能出现可用空间不连续的情况. 此类情况, 主要出现在动态加载模块时.
  2. 持久映射用于将高端内存域中的非持久页映射到内核中
  3. 固定映射是与物理地址空间中的固定页关联的虚拟地址空间项,但具体关联的页帧可以自由选择. 它与通过固定公式与物理内存关联的直接映射页相反,虚拟固定映射地址与物理内存位置之间的关联可以自行定义,关联建立后内核总是会注意到的.

在这里有两个预处理器符号很重要 __VMALLOC_RESERVE设置了vmalloc区域的长度, 而MAXMEM则表示内核可以直接寻址的物理内存的最大可能数量.

  1. 直接映射区

线性空间中从3G开始最大896M的区间, 为直接内存映射区,该区域的线性地址和物理地址存在线性转换关系:线性地址=3G+物理地址。

  1. 动态内存映射区

该区域由内核函数vmalloc来分配, 特点是 : 线性空间连续, 但是对应的物理空间不一定连续. vmalloc分配的线性地址所对应的物理页可能处于低端内存, 也可能处于高端内存.

  1. 永久内存映射区

该区域可访问高端内存. 访问方法是使用alloc_page(_GFP_HIGHMEM)分配高端内存页或者使用kmap函数将分配到的高端内存映射到该区域.

  1. 固定映射区

该区域和4G的顶端只有4k的隔离带,其每个地址项都服务于特定的用途,如ACPI_BASE等。

说明 注意用户空间当然可以使用高端内存,而且是正常的使用,内核在分配那些不经常使用的内存时,都用高端内存空间(如果有),所谓不经常使用是相对来说的,比如内核的一些数据结构就属于经常使用的,而用户的一些数据就属于不经常使用的。用户在启动一个应用程序时,是需要内存的,而每个应用程序都有3G的线性地址,给这些地址映射页表时就可以直接使用高端内存。 而且还要纠正一点的是:那128M线性地址不仅仅是用在这些地方的,如果你要加载一个设备,而这个设备需要映射其内存到内核中,它也需要使用这段线性地址空间来完成,否则内核就不能访问设备上的内存空间了.

2 kmallc & kfree分配释放连续的物理内存

kmalloc和kzalloc

kmalloc函数与用户空间的malloc一族函数非常类似, 只不过它多了一个flags参数, kmalloc函数是一个简单的接口, 用它可以获取以字节为单位的一块内核内存.

如果你需要整个页, 那么前面讨论的页分配接口是更好的选择. 但是, 对大多数内核分配来说, kmalloc接口用的更多, 同时内核也提供了kzalloc该接口在kmalloc的基础上会将分配的内存清0. 他们定义在tools/virtio/linux/kernel.h?v=4.7, line 46

这两个函数返回一个指向内存块的指针, 其内存块至少要有size大小. 所分配的内存区在物理上是连续的. 在出错时, 它返回NULL. 除非没有足够的内存可用, 否则内核总能分配成功. 在对kmalloc调用之后, 你必须检查返回的是不是NULL, 如果是, 要适当处理错误.

kfree释放内存

kmalloc的另一端就是kfree, 用于释放分配的内存, kfree声明与定义

kmalloc定义

kzalloc定义

kfree定义

tools/virtio/linux/kernel.h?v=4.7, line 46

tools/virtio/linux/kernel.h?v=4.7, line 52

tools/virtio/linux/kernel.h?v=4.7, line 60

include/linux/slab.h, line 466

include/linux/slab.h?v=4.7, line 620

mm/slob.c?v=4.7, line 484 mm/slub.c?v=4.7, line 3645 mm/slab.c?v=4.7, line 3853

3 分配掩码(gfp_mask标志)

3.1 分配掩码

前述所有函数中强制使用的mask参数,到底是什么语义?

我们知道Linux将内存划分为内存域. 内核提供了所谓的内存域修饰符(zone modifier)(在掩码的最低4个比特位定义), 来指定从哪个内存域分配所需的页.

内核使用宏的方式定义了这些掩码, 一个掩码的定义被划分为3个部分进行定义, 我们会逐步展开来讲解, 参见include/linux/gfp.h?v=4.7, line 12~374, 共计26个掩码信息, 因此后面__GFP_BITS_SHIFT = 26.

3.2 掩码分类

Linux中这些掩码标志gfp_mask分为3种类型 :

类型

描述

区描述都符

内核把物理内存分为多个区, 每个区用于不同的目的, 区描述符指明到底从这些区中的哪一区进行分配

行为修饰符

表示内核应该如何分配所需的内存. 在某些特定情况下, 只能使用某些特定的方法分配内存

类型标志

组合了行为修饰符和区描述符, 将这些可能用到的组合归纳为不同类型

3.3 内核中掩码的定义

3.3.1 内核中的定义方式
代码语言:javascript
复制
//  http://lxr.free-electrons.com/source/include/linux/gfp.h?v=4.7

/*  line 12 ~ line 44  第一部分
 *  定义可掩码所在位的信息, 每个掩码对应一位为1
 *  定义形式为  #define  ___GFP_XXX      0x01u
 */
/* Plain integer GFP bitmasks. Do not use this directly. */
#define ___GFP_DMA              0x01u
#define ___GFP_HIGHMEM          0x02u
#define ___GFP_DMA32            0x04u
#define ___GFP_MOVABLE          0x08u
/*  ......  */

/*  line 46 ~ line 192  第二部分
 *  定义掩码和MASK信息, 第二部分的某些宏可能是第一部分一个或者几个的组合
 *  定义形式为  #define  __GFP_XXX        ((__force gfp_t)___GFP_XXX)
 */
#define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
#define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
#define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
#define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
#define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

/*  line 194 ~ line 260  第三部分
 *  定义掩码
 *  定义形式为  #define  GFP_XXX      __GFP_XXX
 */
#define GFP_DMA         __GFP_DMA
#define GFP_DMA32       __GFP_DMA32
3.3.3 定义掩码

然后第二部分, 相对而言每一个宏又被重新定义如下, 参见include/linux/gfp.h?v=4.7, line 46 ~ line 192

代码语言:javascript
复制
/*
* Physical address zone modifiers (see linux/mmzone.h - low four bits)
*
* Do not put any conditional on these. If necessary modify the definitions
* without the underscores and use them consistently. The definitions here may
* be used in bit comparisons.
* 定义区描述符
*/
#define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
#define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
#define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
#define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
#define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

/*
* Page mobility and placement hints
*
* These flags provide hints about how mobile the page is. Pages with similar
* mobility are placed within the same pageblocks to minimise problems due
* to external fragmentation.
*
* __GFP_MOVABLE (also a zone modifier) indicates that the page can be
*   moved by page migration during memory compaction or can be reclaimed.
*
* __GFP_RECLAIMABLE is used for slab allocations that specify
*   SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
*
* __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
*   these pages will be spread between local zones to avoid all the dirty
*   pages being in one zone (fair zone allocation policy).
*
* __GFP_HARDWALL enforces the cpuset memory allocation policy.
*
* __GFP_THISNODE forces the allocation to be satisified from the requested
*   node with no fallbacks or placement policy enforcements.
*
* __GFP_ACCOUNT causes the allocation to be accounted to kmemcg (only relevant
*   to kmem allocations).
*/
#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
#define __GFP_WRITE     ((__force gfp_t)___GFP_WRITE)
#define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
#define __GFP_THISNODE  ((__force gfp_t)___GFP_THISNODE)
#define __GFP_ACCOUNT   ((__force gfp_t)___GFP_ACCOUNT)

/*
* Watermark modifiers -- controls access to emergency reserves
*
* __GFP_HIGH indicates that the caller is high-priority and that granting
*   the request is necessary before the system can make forward progress.
*   For example, creating an IO context to clean pages.
*
* __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
*   high priority. Users are typically interrupt handlers. This may be
*   used in conjunction with __GFP_HIGH
 *
 * __GFP_MEMALLOC allows access to all memory. This should only be used when
 *   the caller guarantees the allocation will allow more memory to be freed
 *   very shortly e.g. process exiting or swapping. Users either should
 *   be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 *
 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 *   This takes precedence over the __GFP_MEMALLOC flag if both are set.
 */
#define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)
#define __GFP_HIGH      ((__force gfp_t)___GFP_HIGH)
#define __GFP_MEMALLOC  ((__force gfp_t)___GFP_MEMALLOC)
#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)

/*
 * Reclaim modifiers
 *
 * __GFP_IO can start physical IO.
 *
 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 *   allocator recursing into the filesystem which might already be holding
 *   locks.
 *
 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 *   This flag can be cleared to avoid unnecessary delays when a fallback
 *   option is available.
 *
 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 *   the low watermark is reached and have it reclaim pages until the high
 *   watermark is reached. A caller may wish to clear this flag when fallback
 *   options are available and the reclaim is likely to disrupt the system. The
 *   canonical example is THP allocation where a fallback is cheap but
 *   reclaim/compaction may cause indirect stalls.
 *
 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 *
 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
 *   _might_ fail.  This depends upon the particular VM implementation.
 *
 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
 *   cannot handle allocation failures. New users should be evaluated carefully
 *   (and the flag should be used only when there is no reasonable failure
 *   policy) but it is definitely preferable to use the flag rather than
 *   opencode endless loop around allocator.
 *
 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will
 *   return NULL when direct reclaim and memory compaction have failed to allow
 *   the allocation to succeed.  The OOM killer is not called with the current
 *   implementation.
 */
#define __GFP_IO        ((__force gfp_t)___GFP_IO)
#define __GFP_FS        ((__force gfp_t)___GFP_FS)
#define __GFP_DIRECT_RECLAIM    ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
#define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
#define __GFP_REPEAT    ((__force gfp_t)___GFP_REPEAT)
#define __GFP_NOFAIL    ((__force gfp_t)___GFP_NOFAIL)
#define __GFP_NORETRY   ((__force gfp_t)___GFP_NORETRY)

/*
 * Action modifiers
 *
 * __GFP_COLD indicates that the caller does not expect to be used in the near
 *   future. Where possible, a cache-cold page will be returned.
 *
 * __GFP_NOWARN suppresses allocation failure reports.
 *
 * __GFP_COMP address compound page metadata.
 *
 * __GFP_ZERO returns a zeroed page on success.
 *
 * __GFP_NOTRACK avoids tracking with kmemcheck.
 *
 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
 *   distinguishing in the source between false positives and allocations that
 *   cannot be supported (e.g. page tables).
 *
 * __GFP_OTHER_NODE is for allocations that are on a remote node but that
 *   should not be accounted for as a remote allocation in vmstat. A
 *   typical user would be khugepaged collapsing a huge page on a remote
 *   node.
 */
#define __GFP_COLD      ((__force gfp_t)___GFP_COLD)
#define __GFP_NOWARN    ((__force gfp_t)___GFP_NOWARN)
#define __GFP_COMP      ((__force gfp_t)___GFP_COMP)
#define __GFP_ZERO      ((__force gfp_t)___GFP_ZERO)
#define __GFP_NOTRACK   ((__force gfp_t)___GFP_NOTRACK)
#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)

/* Room for N __GFP_FOO bits */
#define __GFP_BITS_SHIFT 26
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))

给出的常数,其中一些很少使用,因此我不会讨论。其中最重要的一些常数语义如下所示

其中在开始的位置定义了对应的区修饰符, 定义在include/linux/gfp.h?v=4.7, line 46 ~ line 57

区修饰符标志

描述

__GFP_DMA

从ZONE_DMA中分配内存

__GFP_HIGHMEM

从ZONE_HIGHMEM或ZONE_NORMAL中分配内存

__GFP_DMA32

从ZONE_DMA32中分配内存

__GFP_MOVABLE

从__GFP_MOVABLE中分配内存

其次还定义了我们程序和函数中所需要的掩码MASK的信息, 由于其中__GFP_DMA, __GFP_DMA32, __GFP_HIGHMEM, __GFP_MOVABLE是在内存中分别有对应的内存域信息, 因此我们定义了内存域的掩码GFP_ZONEMASK, 参见include/linux/gfp.h?v=4.7, line 57

代码语言:javascript
复制
#define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

接着内核定义了行为修饰符

/* __GFP_WAIT表示分配内存的请求可以中断。也就是说,调度器在该请求期间可随意选择另一个过程执行,或者该请求可以被另一个更重要的事件中断. 分配器还可以在返回内存之前, 在队列上等待一个事件(相关进程会进入睡眠状态).

虽然名字相似,但__GFP_HIGH与__GFP_HIGHMEM毫无关系,请不要弄混这两者

行为修饰符

描述

__GFP_RECLAIMABLE __GFP_MOVABLE

是页迁移机制所需的标志. 顾名思义,它们分别将分配的内存标记为可回收的或可移动的。这影响从空闲列表的哪个子表获取内存

__GFP_WRITE

__GFP_HARDWALL

只在NUMA系统上有意义. 它限制只在分配到当前进程的各个CPU所关联的结点分配内存。如果进程允许在所有CPU上运行(默认情况),该标志是无意义的。只有进程可以运行的CPU受限时,该标志才有效果

__GFP_THISNODE

也只在NUMA系统上有意义。如果设置该比特位,则内存分配失败的情况下不允许使用其他结点作为备用,需要保证在当前结点或者明确指定的结点上成功分配内存

__GFP_ACCOUNT

__GFP_ATOMIC

__GFP_HIGH

如果请求非常重要, 则设置__GFP_HIGH,即内核急切地需要内存时。在分配内存失败可能给内核带来严重后果时(比如威胁到系统稳定性或系统崩溃), 总是会使用该标志

__GFP_MEMALLOC

__GFP_NOMEMALLOC

__GFP_IO

说明在查找空闲内存期间内核可以进行I/O操作. 实际上, 这意味着如果内核在内存分配期间换出页, 那么仅当设置该标志时, 才能将选择的页写入硬盘

__GFP_FS

允许内核执行VFS操作. 在与VFS层有联系的内核子系统中必须禁用, 因为这可能引起循环递归调用.

__GFP_DIRECT_RECLAIM

__GFP_KSWAPD_RECLAIM

__GFP_RECLAIM

__GFP_REPEAT

在分配失败后自动重试,但在尝试若干次之后会停止

__GFP_NOFAIL

在分配失败后一直重试,直至成功

__GFP_NORETRY

在分配失败后不重试,因此可能分配失败

__GFP_COLD

如果需要分配不在CPU高速缓存中的“冷”页时,则设置__GFP_COLD

__GFP_NOWARN

在分配失败时禁止内核故障警告。在极少数场合该标志有用

__GFP_COMP

添加混合页元素, 在hugetlb的代码内部使用

__GFP_ZERO

在分配成功时,将返回填充字节0的页

__GFP_NOTRACK

__GFP_NOTRACK_FALSE_POSITIVE __GFP_NOTRACK

__GFP_OTHER_NODE

那自然还有__GFP_BITS_SHIFT来表示我们所有的掩码位, 由于我们共计26个掩码位

代码语言:javascript
复制
/* Room for N __GFP_FOO bits */
#define __GFP_BITS_SHIFT 26
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))

可以同时指定这些分配标志, 例如

代码语言:javascript
复制
ptr = kmalloc(size, __GFP_IO | __GFP_FS);

说明页分配器(最终会调用alloc_page)在分配时可以执行I/O, 在必要时还可以执行文件系统操作. 这就让内核有很大的自由度, 以便它尽可能找到空闲的内存来满足分配请求. 大多数分配器都会执行这些修饰符, 但一般不是这样直接指定, 而是将这些行为描述符标志进行分组, 即类型标志

3.3.4 掩码分组

最后来看第三部分, 由于这些标志几乎总是组合使用,内核作了一些分组,包含了用于各种标准情形的适当的标志. 称之为类型标志, 定义在include/linux/gfp.h?v=4.7, lien 194 ~ line 258

类型标志指定所需的行为和区描述符以安城特殊类型的处理, 正因为这一点, 内核总是趋于使用正确的类型标志, 而不是一味地指定它可能用到的多种描述符. 这么做既简单又不容易出错误.

如果有可能的话, 在内存管理子系统之外, 总是把下列分组之一用于内存分配. 在内核源代码中, 双下划线通常用于内部数据和定义. 而这些预定义的分组名没有双下划线前缀, 点从侧面验证了上述说法.

代码语言:javascript
复制
#define GFP_ATOMIC      (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
#define GFP_KERNEL      (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
#define GFP_NOWAIT      (__GFP_KSWAPD_RECLAIM)
#define GFP_NOIO        (__GFP_RECLAIM)
#define GFP_NOFS        (__GFP_RECLAIM | __GFP_IO)
#define GFP_TEMPORARY   (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
                         __GFP_RECLAIMABLE)
#define GFP_USER        (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
#define GFP_DMA         __GFP_DMA
#define GFP_DMA32       __GFP_DMA32
#define GFP_HIGHUSER    (GFP_USER | __GFP_HIGHMEM)
#define GFP_HIGHUSER_MOVABLE    (GFP_HIGHUSER | __GFP_MOVABLE)
#define GFP_TRANSHUGE   ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
                         __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
                         ~__GFP_RECLAIM)

/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
#define GFP_MOVABLE_SHIFT 3

掩码组

描述

GFP_ATOMIC

用于原子分配,在任何情况下都不能中断, 可能使用紧急分配链表中的内存, 这个标志用在中断处理程序, 下半部, 持有自旋锁以及其他不能睡眠的地方

GFP_KERNEL

这是一种常规的分配方式, 可能会阻塞. 这个标志在睡眠安全时用在进程的长下文代码中. 为了获取调用者所需的内存, 内核会尽力而为. 这个标志应该是首选标志

GFP_KERNEL_ACCOUNT

GFP_NOWAIT

与GFP_ATOMIC类似, 不同之处在于, 调用不会退给紧急内存池, 这就增加了内存分配失败的可能性

GFP_NOIO

这种分配可以阻塞, 但不会启动磁盘I/O, 这个标志在不能引发更多的磁盘I/O时阻塞I/O代码, 这可能导致令人不愉快的递归

GFP_NOFS

这种分配在必要时可以阻塞, 但是也可能启动磁盘, 但是不会启动文件系统操作, 这个标志在你不鞥在启动另一个文件系统操作时, 用在文件系统部分的代码中

GFP_TEMPORARY

GFP_USER

这是一种常规的分配方式, 可能会阻塞. 这个标志用于为用户空间进程分配内存时使用

GFP_DMA GFP_DMA32

用于分配适用于DMA的内存, 当前是__GFP_DMA的同义词, GFP_DMA32也是__GFP_GMA32的同义词

GFP_HIGHUSER

是GFP_USER的一个扩展, 也用于用户空间. 它允许分配无法直接映射的高端内存. 使用高端内存页是没有坏处的,因为用户过程的地址空间总是通过非线性页表组织的

GFP_HIGHUSER_MOVABLE

用途类似于GFP_HIGHUSER,但分配将从虚拟内存域ZONE_MOVABLE进行

GFP_TRANSHUGE

  • 其中GFP_NOIO和GFP_NOFS, 分别明确禁止I/O操作和访问VFS层, 但同时设置了__GFP_RECLAIM,因此可以被回收
  • 而GFP_KERNEL和GFP_USER. 分别是内核和用户分配的默认设置。二者的失败不会立即威胁系统稳定性, GFP_KERNEL绝对是内核源代码中最常使用的标志

最后内核设置了碎片管理的可移动依据组织页的MASK信息GFP_MOVABLE_MASK, 参见include/linux/gfp.h?v=4.7, line 262

在你编写的绝大多数代码中, 用么用到的是GFP_KERNEL, 要么是GFP_ATOMIC, 当然各个类型标志也均有其应用场景

情形

相应标志

进程上下文, 可以睡眠

使用GFP_KERNEL

进程上下文, 不可以睡眠

使用GFP_KERNEL, 在你睡眠之前或之后以GFP_KERNEL执行内存分配

中断处理程序

使用GFP_ATMOIC

软中断

使用GFP_ATMOIC

tasklet

使用GFP_ATMOIC

需要用于DMA的内存, 可以睡眠

使用(GFP_DMA GFP_KERNEL)

需要用于DMA的内存, 不可以睡眠

使用(GFP_DMA GFP_ATOMIC), 或在你睡眠之前执行内存分配

3.3.5 掩码总结

我们从注释中找到这样的信息, 可以作为参考

代码语言:javascript
复制
bit       result
=================
0x0    => NORMAL
0x1    => DMA or NORMAL
0x2    => HIGHMEM or NORMAL
0x3    => BAD (DMA+HIGHMEM)
0x4    => DMA32 or DMA or NORMAL
0x5    => BAD (DMA+DMA32)
0x6    => BAD (HIGHMEM+DMA32)
0x7    => BAD (HIGHMEM+DMA32+DMA)
0x8    => NORMAL (MOVABLE+0)
0x9    => DMA or NORMAL (MOVABLE+DMA)
0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
0xb    => BAD (MOVABLE+HIGHMEM+DMA)
0xc    => DMA32 (MOVABLE+DMA32)
0xd    => BAD (MOVABLE+DMA32+DMA)
0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)

GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.

3.4 掩码函数接口

很有趣的一点是,没有__GFP_NORMAL常数,而内存分配的主要负担却落到ZONE_NORMAL内存域

内核考虑到这一点, 提供了一个函数gfp_zone来计算与给定分配标志兼容的最高内存域. 那么内存分配可以从该内存域或更低的内存域进行, 该函数定义在include/linux/gfp.h?v=4.7, line 394

代码语言:javascript
复制
static inline enum zone_type gfp_zone(gfp_t flags)
{
    enum zone_type z;
    int bit = (__force int) (flags & GFP_ZONEMASK);

    z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
                     ((1 << GFP_ZONES_SHIFT) - 1);
    VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
    return z;
}

其中GFP_ZONES_SHIFT的定义如下, 在include/linux/gfp.h?v=4.7, line 337

代码语言:javascript
复制
#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
/* ZONE_DEVICE is not a valid GFP zone specifier */
#define GFP_ZONES_SHIFT 2
#else
#define GFP_ZONES_SHIFT ZONES_SHIFT
#endif

#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
#endif

由于内存域修饰符的解释方式不是那么直观, 表3-7给出了该函数结果的一个例子, 其中DMA和DMA32内存域相同. 假定在下文中没有设置__GFP_MOVABLE修饰符.

修饰符

扫描的内存域

ZONE_NORMAL、ZONE_DMA

__GFP_DMA

ZONE_DMA

__GFP_DMA & __GFP_HIGHMEM

ZONE_DMA

__GFP_HIGHMEM

ZONE_HIGHMEM、ZONE_NORMAL、ZONE_DMA

如果__GFP_DMA和__GFP_HIGHMEM都没有设置, 则首先扫描ZONE_NORMAL, 后面是ZONE_DMA

  • 如果设置了__GFP_HIGHMEM没有设置__GFP_DMA,则结果是从ZONE_HIGHMEM开始扫描所有3个内存域。
  • 如果设置了__GFP_DMA,那么__GFP_HIGHMEM设置与否没有关系. 只有ZONE_DMA用于3种情形. 这是合理的, 因为同时使用__GFP_HIGHMEM和__GFP_DMA没有意义. 高端内存从来都不适用于DMA

设置__GFP_MOVABLE不会影响内核的决策,除非它与__GFP_HIGHMEM同时指定. 在这种情况下, 会使用特殊的虚拟内存域ZONE_MOVABLE满足内存分配请求. 对前文描述的内核的反碎片策略而言, 这种行为是必要的.

除了内存域修饰符之外, 掩码中还可以设置一些标志.

下图中给出了掩码的布局,以及与各个比特位置关联的常数. __GFP_DMA32出现了几次,因为它可能位于不同的地方.

与内存域修饰符相反, 这些额外的标志并不限制从哪个物理内存段分配内存, 但确实可以改变分配器的行为. 例如, 它们可以修改查找空闲内存时的积极程度.

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-12-27 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 前景回顾
    • 1.1 内核映射区
    • 2 kmallc & kfree分配释放连续的物理内存
    • 3 分配掩码(gfp_mask标志)
      • 3.1 分配掩码
        • 3.2 掩码分类
          • 3.3 内核中掩码的定义
            • 3.3.1 内核中的定义方式
            • 3.3.3 定义掩码
          • 3.3.4 掩码分组
            • 3.3.5 掩码总结
          • 3.4 掩码函数接口
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档