专栏首页linux、Python学习Python神技能 | 使用爬虫获取汽车之家全车型数据

Python神技能 | 使用爬虫获取汽车之家全车型数据

最近想在工作相关的项目上做技术改进,需要全而准的车型数据,寻寻觅觅而不得,所以就只能自己动手丰衣足食,到网上获(窃)得(取)数据了。

汽车之家是大家公认的数据做的比较好的汽车网站,所以就用它吧。(感谢汽车之家的大大们这么用心地做数据,仰慕)

俗话说的好,“十爬虫九python”,作为一只java狗,我颤颤巍巍地拿起了python想要感受一下scrapy的强大。。。

在写这个爬虫之前,我用urllib2,BeautifulSoup写了一个版本,不过效率太差,而且还有内存溢出的问题,作为python小白感觉很无力,所以用scrapy才是正道。

嗯,开搞。

准备工作

1.安装python,版本是2.7

2.安装scrapy模块, 版本是1.4.0

参考

汽车之家车型数据爬虫[https://github.com/LittleLory/codePool/tree/master/python/autohome_spider]:这是我工程的代码,以下内容需要参照着代码来理解,就不贴代码在这里了。

Scrapy中文文档:这是Scrapy的中文文档,具体细节可以参照文档。感谢Summer同学的翻译。

Xpath教程:解析页面数据要用到xpath的语法,简单了解一下,在做的过程中遇到问题去查一下就可以了。

初始化工程

scrapy工程的初始化很方便,在shell中的指定目录下执行scrapy start startproject 项目名称,就自动化生成了。

执行这步的时候遇到了一个问题,抛出了异常"TLSVersion.TLSv1_1: SSL.OP_NO_TLSv1_1",解决方法是执行sudo pip install twisted==13.1.0,应该是依赖库版本不兼容。

目录结构

工程初始化后,scrapy中的各个元素就被构建好了,不过构建出来的是一副空壳,需要我们往里边写入我们的爬虫逻辑。

初始化后的目录结构是这样的:

  • spiders:爬虫目录,爬虫的爬取逻辑就放在个目录下边
  • items.py:数据实体类,在这里定义我们爬到的数据结构
  • middlewares.py:爬虫中间件(我自己翻译的哈),在这里定义爬取前、爬取后需要处理的逻辑
  • pipelines.py:数据管道,爬取后的数据实体会经过数据管道的处理
  • settings.py:配置文件,可以在这里配置爬虫的爬取速度,配置中间件、管道是否开启和先后顺序,配置数据输出的格式等。

了解过这些文件的作用后就可以开始写爬虫了。

开始吧!

首先,确定要爬取的目标数据。

我的目标是获取汽车的品牌、车系、车型数据,先从品牌开始。

在汽车之家的页面中寻觅一番后,找到了一个爬虫的切入点,汽车之家车型大全。这个页面里有所有品牌的数据,正是我的目标。不过在观察的过程中发现,这个页面里的品牌数据是在页面向下滚动的过程中延迟加载的,这样我们通过请求这个页面不能获取到延迟加载的那部分数据。不过不要慌,看一下延迟加载的方式是什么样的。

打开浏览器控制台的网络请求面板,滚动页面来触发延迟加载,发现浏览器发送了一个异步请求:

复制请求的URL看看:

找到规律了,每一次加载的URL,都只是改变了对应的字母,所以对A到Z分别请求一次就取到了所有的品牌数据。

打开http://www.autohome.com.cn/grade/carhtml/B.html看下,发现页面的数据很规整,是按照品牌-厂商-车系的层级组织的。嗯,正合我意,那就开爬吧。

编写Spider

在spiders目录下边,新建一个brand_spider.py文件,在文件中定义BrandSpider类,这个类继承了scrapy.Spider类,这就是scrapy的Spider类。在BrandSpider中,需要声明name变量,这是这个爬虫的ID;还需要声明start_urls,这是爬虫的起点链接;再定义一个parse方法,里面实现爬虫的逻辑。

parse方法的入参中,response就是对start_urls中的链接的请求响应数据,我们要爬取的品牌数据就在这里面,我们需要从response中提取出来。从response提取数据需要使用xpath语法,参考上边的xpath教程。

提取数据之前,需要先给品牌数据定义一个实体类,因为需要把品牌数据存到数据实体中并落地到磁盘。在items.py文件中定义一个BrandItem类,这个类继承了scrapy.Item类,类中声明了爬取到的、要落地的品牌相关数据,这就是scrapy的Item类。

定义好品牌实体后,在parse方法中声明一个BrandItem实例,然后通过reponse.xpath方法取到想要的品牌ID、品牌url、品牌名称、图标url等数据,并设置到BrandItem实例中,最后通过yield来聚合爬取到的各个品牌数据并返回,返回的数据会进入pipeline。

编写Pipeline

爬取到的数据接着被pipeline.py文件中定义的Pipeline类处理,这个类通常是对传入的Item实体做数据的清洗、排重等工作,可以定义多个Pipeline,依次对Item处理。由于暂时没有这方面的需要,就不改写这个文件,保持默认状态就好。经过pipeline的处理后,数据进入数据集。

输出csv格式数据

对于爬取到的车型数据,我想以csv的格式输出,并且输出到指定目录下,此时需要修改settings.py文件。

在settings.py中添加FEED_FORMAT = 'csv'FEED_URI = 'data/%(name)s_%(time)s.csv'两项,目的是指定输出格式为csv,输出到data目录下,以”爬虫名称_爬取时间.csv“格式命名。

执行爬虫

品牌数据的爬虫编写完成了,在项目根目录下执行scrapy crawl brand,不出意外的话,在执行了brand爬虫后,会在data目录下出现一个新的csv文件,并且装满了品牌数据。

小心被屏蔽

不过需要注意一个问题,就是当爬虫高频地请求网站接口的时候,有可能会被网站识别出来并且屏蔽掉,因为太高频的请求会对网站的服务器造成压力,所以需要对爬虫限速。

在settings.py中添加DOWNLOAD_DELAY = 3,限制爬虫的请求频率为平均3秒一次。

另外,如果爬虫发送的请求头中没有设置user agent也很容易被屏蔽掉,所以要对请求头设置user agent。

在项目根目录下新建user_agent_middlewares.py文件,在文件中定义UserAgentMiddleware类,继承了UserAgentMiddleware类。在UserAgentMiddleware中声明user_agent_list,存放一些常用的user agent,然后重写process_request方法,在user_agent_list中随机选取user agent写入请求头中。

车系、车型爬虫

车系爬虫与上边的品牌爬虫类似,实现在spiders/series_spider.py中。

车型爬虫稍微复杂一些,实现在spiders/model_spider.py中。车型爬虫要从页面中解析出车型数据,同时要解析出更多的URL添加到请求队列中。而且,车型爬虫爬取的页面并不像品牌数据页面那么规整,所以要根据URL的特征以及页面中的特征来调整解析策略。因此在这里用到了CrawlSpiderRules,具体参照Spider文档。

总结

以上就实现了一个简单的汽车之家的车型数据爬虫,其中用到了scrapy中的部分元素,当然还有很多元素没有涉及到,不过对于一个简单爬虫来说足矣。

Tip

在用xpath解析页面的时候,写出来的xpath语句很可能与预期不符,而且调试起来很麻烦,我是用以下方式来提高效率的:

  1. 使用chrome上的XPath Helper插件。安装好插件,打开目标页面,按command+shift+x(mac版的快捷键)打开插件面板,在面板里输入xpath语句,就能看到取到的结果了:
  1. 使用scrapy shell调试。在工程目录下执行scrapy shell http://www.xxxxx.xx,之后就会进入python的交互终端,这时就可以进行调试了。执行print response.xpath('xxxxx')来验证xpath语句是否符合预期。

作者:littlelory 来源:http://www.jianshu.com/p/792e19ed9e1

原文链接:http://www.jianshu.com/p/792e19ed9e1

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 一篇了解爬虫技术方方面面

    传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。聚焦爬...

    马哥linux运维
  • 爬虫技术的门道,这篇文章总结的最全

    Web是一个开放的平台,这也奠定了Web从90年代初诞生直至今日将近30年来蓬勃的发展。然而,正所谓成也萧何败也萧何,开放的特型、搜索引擎以及简单易学的HTML...

    马哥linux运维
  • Python神技能:六张表 搞定 Xpath 语法

    <img src="https://pic4.zhimg.com/v2-0ea5d1dba9a1cf0c04695edbcfbc248b_b.jpg" dat...

    马哥linux运维
  • Python神技能 | 使用爬虫获取汽车之家全车型数据

    最近想在工作相关的项目上做技术改进,需要全而准的车型数据,寻寻觅觅而不得,所以就只能自己动手丰衣足食,到网上获(窃)得(取)数据了。 汽车之家是大家公认的数据做...

    小小科
  • Scrapy递归抓取简书用户信息

    好久没有录制实战教程视频,大邓就在圣诞节后直接上干货。 之前写过一期【视频教程-用python批量抓取简书用户信息】的文章,是自己造的轮子,今天我趁着刚入门sc...

    企鹅号小编
  • 喵叔的爬虫--第一节--先动动小手儿

    嗨,大家好,我是喵叔。今天开始跟大家讲解一下Python 爬虫的编写,今天是第一节课,这篇文章主要是带领大家动手体验一下爬虫的编写。废话不多说,开始上课。

    喵叔
  • 不踩坑的Python爬虫:如何在一个月内学会爬取大规模数据

    Python爬虫为什么受欢迎 如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编...

    昱良
  • Python爬虫知识点梳理

    学任何一门技术,都应该带着目标去学习,目标就像一座灯塔,指引你前进,很多人学着学着就学放弃了,很大部分原因是没有明确目标,所以,在你准备学爬虫前,先问问自己为什...

    企鹅号小编
  • 我是如何零基础开始能写爬虫的

    利用这些数据,可以做很多领域的分析、市场调研,获得很多有价值的信息,可以应用在很多的工作场景,于是果断开始学习。

    Python中文社区
  • 如何在一个月内学会Python爬取大规模数据

    慕白

扫码关注云+社区

领取腾讯云代金券