前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于SVM的思想做CIFAR-10图像分类

基于SVM的思想做CIFAR-10图像分类

作者头像
西红柿炒鸡蛋
发布2019-01-23 11:20:59
6040
发布2019-01-23 11:20:59
举报
文章被收录于专栏:自学笔记自学笔记

SVM

回顾一下之前的SVM,找到一个间隔最大的函数,使得正负样本离该函数是最远的,是否最远不是看哪个点离函数最远,而是找到一个离函数最近的点看他是不是和该分割函数离的最近的。

使用large margin来regularization。

之前讲SVM的算法:https://www.jianshu.com/p/8fd28df734a0

线性分类

线性SVM就是一种线性分类的方法。输入

,输出

,每一个样本的权重是

,偏置项bias是

。得分函数

算出这么多个类别,哪一个类别的分数高,那就是哪个类别。比如要做的图像识别有三个类别

,假设这张图片有4个像素,拉伸成单列:

得到的结果很明显是dog分数最大,cat的分数最低,但是图片很明显是猫,什么分类器是错误的。

一般来说习惯会把w和b合并了,x加上一个全为1的列,于是有

损失函数

之前的SVM是把正负样本离分割函数有足够的空间,虽然正确的是猫,但是猫的得分是最低的,常规方法是将猫的分数提高,这样才可以提高猫的正确率。但是SVM里面是要求一个间隔最大化,提到这里来说,其实就是cat score不仅仅是要大于其他的分数,而且是要有一个最低阈值,cat score不能低于这个分数。

所以正确的分类score应该是要大于其他的分类score一个阈值:

就是正确分类的分数,

就是其他分类的分数。所以,这个损失函数就是:

只有正确的分数比其他的都大于一个阈值才为0,否则都是有损失的。

只有

损失函数才是0的。这种损失函数称为合页损失函数,用的就是SVM间隔最大化的思想解决,如果损失函数为0,那么不用求解了,如果损失函数不为0,就可以用梯度下降求解。max求解梯度下降有点不现实,所以自然就有了square的合页损失函数。

这种squared hinge loss SVM与linear hinge loss SVM相比较,特点是对违背间隔阈值要求的点加重惩罚,违背的越大,惩罚越大。某些实际应用中,squared hinge loss SVM的效果更好一些。具体使用哪个,可以根据实际问题,进行交叉验证再确定。

对于

的设置,之前SVM其实讨论过,对于一个平面是可以随意伸缩的,只需要增大w和b就可以随意把

增大,所以把它定为1,也就是设置

。因为w的增长或缩小完全可以抵消

的影响。这个时候损失函数就是:

最后还要增加的就是过拟合,regularization的限制了。L2正则化:

加上正则化之后就是:

N是训练样本的个数,取平均损失函数,

就是惩罚的力度了,可以小也可以大,如果大了可能w不足以抵消正负样本之间的间隔,可能会欠拟合,因为

是在w可以自由伸缩达到的条件,如果w太小,可能就不足以增长到1了。如果小了,可能就会造成overfit。对于参数b就没有这么讲究了。

代码实现

首先是对CIFAR10的数据读取:

代码语言:javascript
复制
def load_pickle(f):
    version = platform.python_version_tuple()
    if version[0] == '2':
        return pickle.load(f)
    elif version[0] == '3':
        return pickle.load(f, encoding='latin1')
    raise ValueError("invalid python version: {}".format(version))

def loadCIFAR_batch(filename):
    with open(filename, 'rb') as f:
        datadict = load_pickle(f)
        x = datadict['data']
        y = datadict['labels']
        x = x.reshape(10000, 3, 32, 32).transpose(0, 3, 2, 1).astype('float')
        y = np.array(y)
        return x, y

def loadCIFAR10(root):
    xs = []
    ys = []
    for b in range(1, 6):
        f = os.path.join(root, 'data_batch_%d' % (b, ))
        x, y = loadCIFAR_batch(f)
        xs.append(x)
        ys.append(y)
    X = np.concatenate(xs)
    Y = np.concatenate(ys)
    x_test, y_test = loadCIFAR_batch(os.path.join(root, 'test_batch'))
    return X, Y, x_test, y_test

首先要读入每一个文件的数据,先用load_pickle把文件读成字典形式,取出来。因为常规的图片都是(数量,高,宽,RGB颜色),在loadCIFAR_batch要用transpose来把维度调换一下。最后把每一个文件的数据都集合起来。

之后就是数据的格式调整了:

代码语言:javascript
复制
def data_validation(x_train, y_train, x_test, y_test):
    num_training = 49000
    num_validation = 1000
    num_test = 1000
    num_dev = 500
    mean_image = np.mean(x_train, axis=0)
    x_train -= mean_image
    mask = range(num_training, num_training + num_validation)
    X_val = x_train[mask]
    Y_val = y_train[mask]
    mask = range(num_training)
    X_train = x_train[mask]
    Y_train = y_train[mask]
    mask = np.random.choice(num_training, num_dev, replace=False)
    X_dev = x_train[mask]
    Y_dev = y_train[mask]
    mask = range(num_test)
    X_test = x_test[mask]
    Y_test = y_test[mask]
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_val = np.reshape(X_val, (X_val.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
    X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
    X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
    X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
    X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
    return X_val, Y_val, X_train, Y_train, X_dev, Y_dev, X_test, Y_test
    pass

数据要变成一个长条。

先看看数据长啥样:

代码语言:javascript
复制
def showPicture(x_train, y_train):
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    num_classes = len(classes)
    samples_per_classes = 7
    for y, cls in enumerate(classes):
        idxs = np.flatnonzero(y_train == y)
        idxs = np.random.choice(idxs, samples_per_classes, replace=False)
        for i, idx in enumerate(idxs):
            plt_index = i*num_classes +y + 1
            plt.subplot(samples_per_classes, num_classes, plt_index)
            plt.imshow(x_train[idx].astype('uint8'))
            plt.axis('off')
            if i == 0:
                plt.title(cls)
    plt.show()

然后就是使用谷歌的公式了:

代码语言:javascript
复制
    def loss(self, x, y, reg):
        loss = 0.0
        dw = np.zeros(self.W.shape)
        num_train = x.shape[0]
        scores = x.dot(self.W)
        correct_class_score = scores[range(num_train), list(y)].reshape(-1, 1)
        margin = np.maximum(0, scores - correct_class_score + 1)
        margin[range(num_train), list(y)] = 0
        loss = np.sum(margin)/num_train + 0.5 * reg * np.sum(self.W*self.W)

        num_classes = self.W.shape[1]
        inter_mat = np.zeros((num_train, num_classes))
        inter_mat[margin > 0] = 1
        inter_mat[range(num_train), list(y)] = 0
        inter_mat[range(num_train), list(y)] = -np.sum(inter_mat, axis=1)

        dW = (x.T).dot(inter_mat)
        dW = dW/num_train + reg*self.W
        return loss, dW
        pass

操作都是常规操作,算出score然后求loss最后SGD求梯度更新W。

代码语言:javascript
复制
    def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,batch_size=200, verbose=False):
        num_train, dim = X.shape
        num_classes = np.max(y) + 1
        if self.W is None:
            self.W = 0.001 * np.random.randn(dim, num_classes)
        # Run stochastic gradient descent to optimize W
        loss_history = []
        for it in range(num_iters):
            X_batch = None
            y_batch = None
            idx_batch = np.random.choice(num_train, batch_size, replace = True)
            X_batch = X[idx_batch]
            y_batch = y[idx_batch]
            # evaluate loss and gradient
            loss, grad = self.loss(X_batch, y_batch, reg)
            loss_history.append(loss)
            self.W -=  learning_rate * grad
            if verbose and it % 100 == 0:
                print('iteration %d / %d: loss %f' % (it, num_iters, loss))
        return loss_history
        pass

预测:

代码语言:javascript
复制
    def predict(self, X):
        y_pred = np.zeros(X.shape[0])
        scores = X.dot(self.W)
        y_pred = np.argmax(scores, axis = 1)
        return y_pred

最后运行函数:

代码语言:javascript
复制
 svm = LinearSVM()
    tic = time.time()
    cifar10_name = '../Data/cifar-10-batches-py'
    x_train, y_train, x_test, y_test = loadCIFAR10(cifar10_name)
    X_val, Y_val, X_train, Y_train, X_dev, Y_dev, X_test, Y_test = data_validation(x_train, y_train, x_test, y_test)
    loss_hist = svm.train(X_train, Y_train, learning_rate=1e-7, reg=2.5e4,
                          num_iters=3000, verbose=True)
    toc = time.time()
    print('That took %fs' % (toc - tic))
    plt.plot(loss_hist)
    plt.xlabel('Iteration number')
    plt.ylabel('Loss value')
    plt.show()
    y_test_pred = svm.predict(X_test)
    test_accuracy = np.mean(Y_test == y_test_pred)
    print('accuracy: %f' % test_accuracy)
    w = svm.W[:-1, :]  # strip out the bias
    w = w.reshape(32, 32, 3, 10)
    w_min, w_max = np.min(w), np.max(w)
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    for i in range(10):
        plt.subplot(2, 5, i + 1)
        wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
        plt.imshow(wimg.astype('uint8'))
        plt.axis('off')
        plt.title(classes[i])
    plt.show()

首先是画出整个loss函数趋势:

最后再可视化一下w权值,看看每一个种类提取处理的特征是什么样子的:

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.08.13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • SVM
  • 线性分类
  • 损失函数
  • 代码实现
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档