数学建模过程中的特征选择:scikit-learn--Feature selection(特征选择)

sklearn.feature_selection模块的作用是feature selection,而不是feature extraction。

Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要。剔除那些不重要的指标。

sklearn.feature_selection模块中主要有以下几个方法: SelectKBest和SelectPercentile比较相似,前者选择排名排在前n个的变量,后者选择排名排在前n%的变量。而他们通过什么指标来给变量排名呢?这需要二外的指定。 对于regression问题,可以使用f_regression指标。对于classification问题,可以使用chi2或者f_classif变量。 使用的例子: from sklearn.feature_selection import SelectPercentile, f_classif selector = SelectPercentile(f_classif, percentile=10)

还有其他的几个方法,似乎是使用其他的统计指标来选择变量:using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate SelectFdr, or family wise error SelectFwe.

文档中说,如果是使用稀疏矩阵,只有chi2指标可用,其他的都必须转变成dense matrix。但是我实际使用中发现f_classif也是可以使用稀疏矩阵的。

Recursive feature elimination:循环特征选择 不单独的检验某个变量的价值,而是将其聚集在一起检验。它的基本思想是,对于一个数量为d的feature的集合,他的所有的子集的个数是2的d次方减1(包含空集)。指定一个外部的学习算法,比如SVM之类的。通过该算法计算所有子集的validation error。选择error最小的那个子集作为所挑选的特征。

这个算法相当的暴力啊。由以下两个方法实现:sklearn.feature_selection.RFE,sklearn.feature_selection.RFECV

L1-based feature selection: 该思路的原理是:在linear regression模型中,有的时候会得到sparse solution。意思是说很多变量前面的系数都等于0或者接近于0。这说明这些变量不重要,那么可以将这些变量去除。

Tree-based feature selection:决策树特征选择 基于决策树算法做出特征选择

参考直通车:http://scikit-learn.org/stable/modules/feature_selection.html https://www.jianshu.com/p/b3056d10a20f http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券