前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >最大信息系数(MIC)

最大信息系数(MIC)

作者头像
钱塘小甲子
发布2019-01-29 09:45:21
3.9K1
发布2019-01-29 09:45:21
举报

MIC(Maximal information coefficient)一个很神奇的东西,源自于2011年发在sicence上的一个论文。

学过统计的都知道,有相关系数这么一个东西,通常叫做r。但是其实应该叫做线性相关系数,应用领域还是很窄的。而MIC这个东西呢,首先比较general,不管是什么函数关系,都可以识别,换句话说,正弦函数和双曲线函数和直线,对这个系数而言是一样的。此外还有一点,那就是,如果没有噪音的直线关系和没有噪音的正弦函数关系,他们的MIC都是1,加上相同的噪音之后,如果线性关系的MIC变成0.7了,那么正弦函数关系的MIC也变成0.7,换句话说,噪音对MIC造成的影响与变量之间的函数关系无关。当然这一论证在一篇论文中被反驳了,或者说部分反驳了。

为了说明白这个方法,首先引入一个Mutual inforamtion的东西:

是这么定义的。这里x和y是两个联系的随机变量,这个系数也可以用来衡量相关性,但是有很多缺点。比如,非均一性。不过这点在后面的论文中被推翻了,或者说,局部推翻。

p(x,y)是联合概率密度分布函数,想想就很难计算对不对,所以我们就要找一个办法来做这个事。怎么办呢?还记得蒙特卡洛么!这里有那么一点思想是这样的。

我们把两个 随机变量化成散点图,然后不断的用小方格子去分割。然后计算每个方格子里面的落入概率。在某种意义上,就可以估计出联合概率密度分布了。当然,只有在数据量是无穷的情况下我们才可以认为是真的就相等了。所以,导致随后是数据量越大,MIC越好。看看第一篇nature文章的名字就知道了,Large Data Sets哦!所以如果只有几百条数据,关网页洗洗睡吧。

最后,MIC就是这么计算的。

分母下面是什么意思呢?我们之前不是对散点图残忍的分割了好多块嘛,在X方向和Y方向上就有很多段了。所以|X|就是X方向共被分成了多少段的意思。Y方向也一样。

前面还有一个限制条件,就是|X||Y|<B,也就是说,所有的方格格总数不能大于B。B又是一个什么鬼呢?很遗憾,作者说,B取数据总量的0.6或者0.55次方。

为什么?

作者表示他不想告诉你。这也没有从数学上推导出来,应该是个经验值了。

说完了,那我们来用一下吧。

装好MIC的python包,然后就可以开心的用了,不过,要注意只支持32bit的python。是不是有点蛋疼呢?所以我不能用我的Anaconda Platform了,有点小小的蛋疼呢。

好了,装python之前要好多依赖包哦,import一下,缺什么装什么吧。

代码语言:javascript
复制
import numpy as np
from minepy import MINE

def print_stats(mine):
    print "MIC", mine.mic()


x = np.linspace(0, 1, 1000)
y = np.sin(10 * np.pi * x) + x
mine = MINE(alpha=0.6, c=15)
mine.compute_score(x, y)

print "Without noise:"
print_stats(mine)
print

np.random.seed(0)
y +=np.random.uniform(-1, 1, x.shape[0]) # add some noise
mine.compute_score(x, y)

print "With noise:"
print_stats(mine)

挺简单的一个例子,分别是没有噪音的正弦和有噪音的正弦。

代码语言:javascript
复制
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from minepy import MINE


def mysubplot(x, y, numRows, numCols, plotNum,
              xlim=(-4, 4), ylim=(-4, 4)):

    r = np.around(np.corrcoef(x, y)[0, 1], 1)
    mine = MINE(alpha=0.6, c=15)
    mine.compute_score(x, y)
    mic = np.around(mine.mic(), 1)
    ax = plt.subplot(numRows, numCols, plotNum,
                     xlim=xlim, ylim=ylim)
    ax.set_title('Pearson r=%.1f\nMIC=%.1f' % (r, mic),fontsize=10)
    ax.set_frame_on(False)
    ax.axes.get_xaxis().set_visible(False)
    ax.axes.get_yaxis().set_visible(False)
    ax.plot(x, y, ',')
    ax.set_xticks([])
    ax.set_yticks([])
    return ax

def rotation(xy, t):
    return np.dot(xy, [[np.cos(t), -np.sin(t)],
                       [np.sin(t), np.cos(t)]])

def mvnormal(n=1000):
    cors = [1.0, 0.8, 0.4, 0.0, -0.4, -0.8, -1.0]
    for i, cor in enumerate(cors):
        cov = [[1, cor],[cor, 1]]
        xy = np.random.multivariate_normal([0, 0], cov, n)
        mysubplot(xy[:, 0], xy[:, 1], 3, 7, i+1)

def rotnormal(n=1000):
    ts = [0, np.pi/12, np.pi/6, np.pi/4, np.pi/2-np.pi/6,
          np.pi/2-np.pi/12, np.pi/2]
    cov = [[1, 1],[1, 1]]
    xy = np.random.multivariate_normal([0, 0], cov, n)
    for i, t in enumerate(ts):
        xy_r = rotation(xy, t)
        mysubplot(xy_r[:, 0], xy_r[:, 1], 3, 7, i+8)

def others(n=1000):
    x = np.random.uniform(-1, 1, n)
    y = 4*(x**2-0.5)**2 + np.random.uniform(-1, 1, n)/3
    mysubplot(x, y, 3, 7, 15, (-1, 1), (-1/3, 1+1/3))
    
    y = np.random.uniform(-1, 1, n)
    xy = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1)), axis=1)
    xy = rotation(xy, -np.pi/8)
    lim = np.sqrt(2+np.sqrt(2)) / np.sqrt(2)
    mysubplot(xy[:, 0], xy[:, 1], 3, 7, 16, (-lim, lim), (-lim, lim))

    xy = rotation(xy, -np.pi/8)
    lim = np.sqrt(2)
    mysubplot(xy[:, 0], xy[:, 1], 3, 7, 17, (-lim, lim), (-lim, lim))
    
    y = 2*x**2 + np.random.uniform(-1, 1, n)
    mysubplot(x, y, 3, 7, 18, (-1, 1), (-1, 3))
    
    y = (x**2 + np.random.uniform(0, 0.5, n)) * \
        np.array([-1, 1])[np.random.random_integers(0, 1, size=n)]
    mysubplot(x, y, 3, 7, 19, (-1.5, 1.5), (-1.5, 1.5))

    y = np.cos(x * np.pi) + np.random.uniform(0, 1/8, n)
    x = np.sin(x * np.pi) + np.random.uniform(0, 1/8, n)
    mysubplot(x, y, 3, 7, 20, (-1.5, 1.5), (-1.5, 1.5))

    xy1 = np.random.multivariate_normal([3, 3], [[1, 0], [0, 1]], int(n/4))
    xy2 = np.random.multivariate_normal([-3, 3], [[1, 0], [0, 1]], int(n/4))
    xy3 = np.random.multivariate_normal([-3, -3], [[1, 0], [0, 1]], int(n/4))
    xy4 = np.random.multivariate_normal([3, -3], [[1, 0], [0, 1]], int(n/4))
    xy = np.concatenate((xy1, xy2, xy3, xy4), axis=0)
    mysubplot(xy[:, 0], xy[:, 1], 3, 7, 21, (-7, 7), (-7, 7))

plt.figure(facecolor='white')
mvnormal(n=800)
rotnormal(n=200)
others(n=800)
plt.tight_layout()
plt.show()

最后的效果就是这样的。很明显可以看到,左下角那个有点像三角函数的关系,Pearson系数(就是线性相关系数)为0,而MIC则有0.8。

MIC的资料:

[1]Detecting novel associationsin large data sets

[2]Equitability Analysis of theMaximal Information Coefficient, with Comparisons [3]Equitability, mutual information, and themaximal information coefficient

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016年03月02日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档