前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度 | 在R中估计GARCH参数存在的问题(续)

深度 | 在R中估计GARCH参数存在的问题(续)

作者头像
量化投资与机器学习微信公众号
发布2019-02-26 16:15:57
1.9K0
发布2019-02-26 16:15:57
举报

本期作者:徐瑞龙

未经授权,严禁转载

本文承接《在 R 中估计 GARCH 参数存在的问题》

在之前的博客《在 R 中估计 GARCH 参数存在的问题》中,Curtis Miller 讨论了 fGarch 包和 tseries 包估计 GARCH(1, 1) 模型参数的稳定性问题,结果不容乐观。本文承接之前的博客,继续讨论估计参数的稳定性,这次使用的是前文中提到,但没有详尽测试的 rugarch 包。

rugarch 包的使用

rugarch 包中负责估计 GARCH 模型参数的最主要函数是 ugarchfit,不过在调用该函数值前要用函数 ugarchspec 创建一个特殊对象,用来固定 GARCH 模型的阶数。

代码语言:javascript
复制
srs = ...garch_mod = ugarchspec(
    variance.model = list(
        garchOrder = c(1, 1)),
    mean.model = list(
        armaOrder = c(0, 0),
        include.mean = FALSE))

g <- ugarchfit(spec = garch_mod, data = srs)

需要注意的是 g 是一个 S4 类。

简单实验

首先用 1000 个模拟样本,

代码语言:javascript
复制
library(rugarch)library(ggplot2)library(fGarch)

set.seed(110117)

x <- garchSim(
    garchSpec(
        model = list(            "alpha" = 0.2, "beta" = 0.2, "omega" = 0.2)),
    n.start = 1000,
    n = 1000)

plot(x)
代码语言:javascript
复制
garch_spec = ugarchspec(
    variance.model = list(garchOrder = c(1, 1)),
    mean.model = list(
        armaOrder = c(0, 0), include.mean = FALSE))

g_all <- ugarchfit(
    spec = garch_spec, data = x)

g_50p <- ugarchfit(
    spec = garch_spec, data = x[1:500])

g_20p <- ugarchfit(
    spec = garch_spec, data = x[1:200])

结果同样不容乐观。

代码语言:javascript
复制
coef(g_all)#        omega       alpha1        beta1 # 2.473776e-04 9.738059e-05 9.989026e-01coef(g_50p)#        omega       alpha1        beta1 # 2.312677e-04 4.453120e-10 9.989998e-01 coef(g_20p)#      omega     alpha1      beta1 # 0.03370291 0.09823614 0.79988068

再用 10000 个模拟样本试试,如果使用日线级别的数据的话,这相当于 40 年长度的数据量,

代码语言:javascript
复制
set.seed(110117)

x <- garchSim(
    garchSpec(
        model = list(            "alpha" = 0.2, "beta" = 0.2, "omega" = 0.2)),
    n.start = 1000, n = 10000)

plot(x)

g_all <- ugarchfit(
    spec = garch_spec, data = x)

g_50p <- ugarchfit(
    spec = garch_spec, data = x[1:5000])

g_20p <- ugarchfit(
    spec = garch_spec, data = x[1:2000])
代码语言:javascript
复制
coef(g_all)#     omega    alpha1     beta1 # 0.1955762 0.1924522 0.1967614 coef(g_50p)#     omega    alpha1     beta1 # 0.2003755 0.1919633 0.1650453coef(g_20p)#        omega       alpha1        beta1 # 1.368689e-03 6.757177e-09 9.951920e-01

看来数据量极端大的时候,估计才可能是合理的、稳定的。

rugarch 参数估计的行为

首先使用 1000 个模拟样本做连续估计,样本数从 500 升至 1000。

代码语言:javascript
复制
library(doParallel)

cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)

set.seed(110117)

x <- garchSim(
    garchSpec(
        model = list(alpha = 0.2, beta = 0.2, omega = 0.2)),
    n.start = 1000, n = 1000)

params <- foreach(
    t = 500:1000,
    .combine = rbind,
    .packages = c("rugarch")) %dopar%
    {
        getFitDataRugarch(x[1:t])
    }

rownames(params) <- 500:1000params_df <- as.data.frame(params)
params_df$t <- as.numeric(rownames(params))

ggplot(params_df) +
    geom_line(
        aes(x = t, y = beta1)) +
    geom_hline(
        yintercept = 0.2, color = "blue") +
    geom_ribbon(
        aes(x = t,
            ymin = beta1 - 2 * beta1.se,
            ymax = beta1 + 2 * beta1.se),
        color = "grey", alpha = 0.5) +
    ylab(expression(hat(beta))) +
    scale_y_continuous(
        breaks = c(0, 0.2, 0.25, 0.5, 1)) +
    coord_cartesian(ylim = c(0, 1))

几乎所有关于 β 的估计都非常肯定的被认为是 1!这个结果相较于 fGarch 包来说,更加糟糕。

让我们看看其他参数的行为。

代码语言:javascript
复制
library(reshape2)library(plyr)library(dplyr)

param_reshape <- function(p)
{
    p <- as.data.frame(p)
    p$t <- as.integer(rownames(p))

    pnew <- melt(p, id.vars = "t", variable.name = "parameter")

    pnew$parameter <- as.character(pnew$parameter)
    pnew.se <- pnew[grepl("*.se", pnew$parameter), ]
    pnew.se$parameter <- sub(".se", "", pnew.se$parameter)
    names(pnew.se)[3] <- "se"
    pnew <- pnew[!grepl("*.se", pnew$parameter), ]    return(
        join(
            pnew, pnew.se,
            by = c("t", "parameter"),
            type = "inner"))
}

ggp <- ggplot(
    param_reshape(params),
    aes(x = t, y = value)) +
    geom_line() +
    geom_ribbon(
        aes(ymin = value - 2 * se,
            ymax = value + 2 * se),
        color = "grey",
        alpha = 0.5) +
    geom_hline(yintercept = 0.2, color = "blue") +
    scale_y_continuous(
        breaks = c(0, 0.2, 0.25, 0.5, 0.75, 1)) +
    coord_cartesian(ylim = c(0, 1)) +
    facet_grid(. ~ parameter)

print(ggp + ggtitle("solnp Optimization"))

这种现象不仅限于 β,ω 和 α 也表现出极端不良行为。

极端大样本

下面将样本总数扩充至 10000,连续估计的样本数从 5000 升至 10000,情况有会怎么样?

代码语言:javascript
复制
set.seed(110117)

x <- garchSim(
    garchSpec(
        model = list(alpha = 0.2, beta = 0.2, omega = 0.2)),
    n.start = 1000, n = 10000)

params10k <- foreach(
    t = seq(5000, 10000, 100),
    .combine = rbind,
    .packages = c("rugarch")) %dopar%
    {
        getFitDataRugarch(x[1:t])
    }

rownames(params10k) <- seq(5000, 10000, 100)

params10k_df <- as.data.frame(params10k)
params10k_df$t <- as.numeric(rownames(params10k))

ggplot(params10k_df) +
    geom_line(
        aes(x = t, y = beta1)) +
    geom_hline(
        yintercept = 0.2, color = "blue") +
    geom_ribbon(
        aes(x = t,
            ymin = beta1 - 2 * beta1.se,
            ymax = beta1 + 2 * beta1.se),
        color = "grey", alpha = 0.5) +
    ylab(expression(hat(beta))) +
    scale_y_continuous(
        breaks = c(0, 0.2, 0.25, 0.5, 1)) +
    coord_cartesian(ylim = c(0, 1))

结果堪称完美!之前的猜测是对的,样本要极端大才能保证估计的质量。

其他参数的行为。

代码语言:javascript
复制
ggp10k <- ggplot(
    param_reshape(params10k),
    aes(x = t, y = value)) +
    geom_line() +
    geom_ribbon(
        aes(ymin = value - 2 * se,
            ymax = value + 2 * se),
        color = "grey",
        alpha = 0.5) +
    geom_hline(yintercept = 0.2, color = "blue") +
    scale_y_continuous(
        breaks = c(0, 0.2, 0.25, 0.5, 0.75, 1)) +
    coord_cartesian(ylim = c(0, 1)) +
    facet_grid(. ~ parameter)

print(ggp10k + ggtitle("solnp Optimization"))

相较于 β,ω 和 α 的估计值更加稳定,这一节论和之前文章中的结论大体一致,参数估计的不稳定性集中体现在 β 身上。

结论

在一般大小样本量的情况下,rugarchfGarch 的表现都不好,即使改变函数的最优化算法(相关代码未贴出)也于事无补。不过当样本量极端大时,rugarch 的稳定性大幅改善,这似乎印证了机器学习中的一个常见观点,即大样本 + 简单算法胜过小样本 + 复杂算法

为了解决非大样本情况下估计的稳定性问题,有必要找到一种 bootstrap 方法,人为扩充现实问题中有限的样本量;或者借鉴机器学习的思路,对参数施加正则化约束。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-12-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量化投资与机器学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • rugarch 包的使用
  • 简单实验
  • rugarch 参数估计的行为
    • 极端大样本
    • 结论
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档