简单易学的机器学习算法——极限学习机(ELM)

一、极限学习机的概念

       极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。

ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。

二、极限学习机的原理

ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM可以随机初始化输入权重和偏置并得到相应的输出权重。

(选自黄广斌老师的PPT)

对于一个单隐层神经网络(见Figure 1),假设有

个任意的样本

,其中

。对于一个有

个隐层节点的单隐层神经网络可以表示为

其中,

为激活函数,

为输入权重,

为输出权重,

是第

个隐层单元的偏置。

表示

的内积。

       单隐层神经网络学习的目标是使得输出的误差最小,可以表示为

即存在

,使得

可以矩阵表示为

其中,

是隐层节点的输出,

为输出权重,

为期望输出。

为了能够训练单隐层神经网络,我们希望得到

,使得

其中,

,这等价于最小化损失函数

传统的一些基于梯度下降法的算法,可以用来求解这样的问题,但是基本的基于梯度的学习算法需要在迭代的过程中调整所有参数。而在ELM算法中, 一旦输入权重

和隐层的偏置

被随机确定,隐层的输出矩阵

就被唯一确定。训练单隐层神经网络可以转化为求解一个线性系统

。并且输出权重

可以被确定

其中,

是矩阵

的Moore-Penrose广义逆。且可证明求得的解

的范数是最小的并且唯一。

三、实验

    我们使用《简单易学的机器学习算法——Logistic回归》中的实验数据。

原始数据集

我们采用统计错误率的方式来评价实验的效果,其中错误率公式为:

对于这样一个简单的问题,

MATLAB代码

主程序

%% 主函数,二分类问题

%导入数据集
A = load('testSet.txt');

data = A(:,1:2);%特征
label = A(:,3);%标签

[N,n] = size(data);

L = 100;%隐层节点个数
m = 2;%要分的类别数

%--初始化权重和偏置矩阵
W = rand(n,L)*2-1;
b_1 = rand(1,L);
ind = ones(N,1);
b = b_1(ind,:);%扩充成N*L的矩阵

tempH = data*W+b;
H = g(tempH);%得到H

%对输出做处理
temp_T=zeros(N,m);
for i = 1:N
    if label(i,:) == 0
        temp_T(i,1) = 1;
    else 
        temp_T(i,2) = 1;
    end    
end
T = temp_T*2-1;

outputWeight = pinv(H)*T;

%--画出图形
x_1 = data(:,1);  
x_2 = data(:,2);  
hold on  
for i = 1 : N  
    if label(i,:) == 0  
        plot(x_1(i,:),x_2(i,:),'.g');  
    else  
        plot(x_1(i,:),x_2(i,:),'.r');  
    end  
end

output = H * outputWeight;
%---计算错误率
tempCorrect=0;
for i = 1:N
    [maxNum,index] = max(output(i,:));
    index = index-1;
    if index == label(i,:);
        tempCorrect = tempCorrect+1;
    end
end

errorRate = 1-tempCorrect./N;

激活函数

function [ H ] = g( X )
    H = 1 ./ (1 + exp(-X));
end

黄老师提供的极限学习机的代码:点击打开链接

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券