前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >GPU编程(四): 并行规约优化

GPU编程(四): 并行规约优化

作者头像
sean_yang
发布2019-03-04 10:33:32
1.5K1
发布2019-03-04 10:33:32
举报
文章被收录于专栏:Sorrower的专栏Sorrower的专栏

前言

  • 之前第三篇也看到了, 并行方面GPU真的是无往不利, 现在再看下第二个例子, 并行规约. 通过这次的例子会发现, 需要了解GPU架构, 然后写出与之对应的算法的, 两者结合才能得到令人惊叹的结果.
  • 这次也会简要介绍下cuda-gdb的用法, 其实和gdb用法几乎一样, 也就是多了个cuda命令.

cuda-gdb

如果之前没有用过gdb, 可以速学一下, 就几个指令. 想要用cuda-gdb对程序进行调试, 首先你要确保你的gpu没有在运行操作系统界面, 比方说, 我用的是ubuntu, 我就需 要用sudo service lightdm stop关闭图形界面, 进入tty1这种字符界面. 当然用ssh远程访问也是可以的. 接下来, 使用第二篇中矩阵加法的例子. 但是注意, 编译的使用需要改变一下, 加入-g -G参数, 其实和gdb是相似的.

代码语言:javascript
复制
nvcc -g -G CUDAAdd.cu -o CUDAAdd.o

然后使用cuda-gdb CUDAAdd.o即可对程序进行调试.

cuda-gdb
cuda-gdb

在调试之前, 我把代码贴出来:

代码语言:javascript
复制
#include <stdio.h>

__global__ void add(float * x, float *y, float * z, int n){
        int index = threadIdx.x + blockIdx.x * blockDim.x;
        int stride = blockDim.x * gridDim.x;

        for (int i = index; i < n; i += stride){
                z[i] = x[i] + y[i];
        }
}

int main()
{
    int N = 1 << 20;
    int nBytes = N * sizeof(float);

    float *x, *y, *z;
    cudaMallocManaged((void**)&x, nBytes);
    cudaMallocManaged((void**)&y, nBytes);
    cudaMallocManaged((void**)&z, nBytes);

    for (int i = 0; i < N; ++i)
    {
        x[i] = 10.0;
        y[i] = 20.0;
    }

    dim3 blockSize(256);
    // 4096
    dim3 gridSize((N + blockSize.x - 1) / blockSize.x);

    add << < gridSize, blockSize >> >(x, y, z, N);

    cudaDeviceSynchronize();

    float maxError = 0.0;
    for (int i = 0; i < N; i++){
                maxError = fmax(maxError, (float)(fabs(z[i] - 30.0)));
    }
    printf ("max default: %.4f\n", maxError);

    cudaFree(x);
    cudaFree(y);
    cudaFree(z);

    return 0;
}

之后就是常规操作了, 添加断点, 运行, 下一步, 查看想看的数据. 不同点是cuda的指令, 例如cuda block(1,0,0)可以从一开始block(0,0,0)切换到block(1,0,0).

cuda-gdb
cuda-gdb
cuda-gdb
cuda-gdb

未优化并行规约

如果按照常规的思路, 两两进行进行加法运算. 每次步长翻倍即可, 从算法的角度来说, 这是没啥问题的. 但是没有依照GPU架构进行设计.

未优化并行规约
未优化并行规约
代码语言:javascript
复制
#include <stdio.h>

const int   threadsPerBlock = 512;
const int   N       = 2048;
const int   blocksPerGrid   = (N + threadsPerBlock - 1) / threadsPerBlock; /* 4 */

__global__ void ReductionSum( float * d_a, float * d_partial_sum )
{
    /* 申请共享内存, 存在于每个block中 */
    __shared__ float partialSum[threadsPerBlock];

    /* 确定索引 */
    int i   = threadIdx.x + blockIdx.x * blockDim.x;
    int tid = threadIdx.x;

    /* 传global memory数据到shared memory */
    partialSum[tid] = d_a[i];

    /* 传输同步 */
    __syncthreads();

    /* 在共享存储器中进行规约 */
    for ( int stride = 1; stride < blockDim.x; stride *= 2 )
    {
        if ( tid % (2 * stride) == 0 )
            partialSum[tid] += partialSum[tid + stride];
        __syncthreads();
    }

    /* 将当前block的计算结果写回输出数组 */
    if ( tid == 0 )
        d_partial_sum[blockIdx.x] = partialSum[0];
}


int main()
{
    int size = sizeof(float);

    /* 分配显存空间 */
    float   * d_a;
    float   * d_partial_sum;

    cudaMallocManaged( (void * *) &d_a, N * size );
    cudaMallocManaged( (void * *) &d_partial_sum, blocksPerGrid * size );

    for ( int i = 0; i < N; ++i )
        d_a[i] = i;

    /* 调用内核函数 */
    ReductionSum << < blocksPerGrid, threadsPerBlock >> > (d_a, d_partial_sum);

    cudaDeviceSynchronize();

    /* 将部分和求和 */
    int sum = 0;
    for ( int i = 0; i < blocksPerGrid; ++i )
        sum += d_partial_sum[i];

    printf( "sum = %d\n", sum );

    /* 释放显存空间 */
    cudaFree( d_a );
    cudaFree( d_partial_sum );

    return(0);
}

优化后并行规约

其实需要改动的地方非常小, 改变步长即可.

优化后并行规约
优化后并行规约
代码语言:javascript
复制
__global__ void ReductionSum( float * d_a, float * d_partial_sum )
{
    // 相同, 略去
    /* 在共享存储器中进行规约 */
    for ( int stride = blockDim.x / 2; stride > 0; stride /= 2 )
    {
        if ( tid < stride )
            partialSum[tid] += partialSum[tid + stride];
        __syncthreads();
    }
    // 相同, 略去
}

结果分析

之前的文章里面也说过warp. warp: GPU执行程序时的调度单位, 目前cuda的warp的大小为32, 同在一个warp的线程, 以不同数据资源执行相同的指令, 这就是所谓SIMT. 说人话就是, 这32个线程必须要干相同的事情, 如果有线程动作不一致, 就需要等待一波线程完成自己的工作, 然后再去做另外一件事情. 所以, 用图说话就是, 第二种方案可以更快将warp闲置, 交给GPU调度, 所以, 肯定是第二种更快.

未优化并行规约
未优化并行规约
优化后并行规约
优化后并行规约

图一在运算依次之后, 没有warp可以空闲, 而图二直接空闲2个warp. 图一到了第二次可以空闲2个warp, 而图二已经空闲3个warp. 我这副图只是示意图, 如果是实际的, 差距会更大.

所以来看下运行耗时, 会发现差距还是很大的, 几乎是差了一倍. 不过GPU确实算力太猛, 这样看还不太明显, 有意放大数据量会更加明显.

运行结果
运行结果

最后

所以GPU又一次展示了强大的算力, 而且, 这次也看到了只是小小变动, 让算法更贴合架构, 就让运算耗时减半, 所以在优化方面可以做的工作真的是太多了, 之后还有更多优化相关的文章, 有意见或者建议, 评论区见哦~

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019.02.17 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • cuda-gdb
  • 未优化并行规约
  • 优化后并行规约
    • 结果分析
    • 最后
    相关产品与服务
    文件存储
    文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档