前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >为Nginx加入一个使用深度学习的软WAF

为Nginx加入一个使用深度学习的软WAF

作者头像
FB客服
发布2019-03-08 15:19:02
7390
发布2019-03-08 15:19:02
举报
文章被收录于专栏:FreeBufFreeBuf

一、前言

本文介绍如何向Nginx增加了一个使用Tensorflow C库的软WAF模块,模块主体基于Naxsi。

二、获取数据及训练数据

这里,之前有Dalao发表过这样一篇文章:基于卷积神经网络的SQL注入检测。

这是一个开源的项目,但是由于速度的关系,我不打算使用这篇文章的模型,仅仅采用这篇文章使用的数据集。这样可以节省很多特征工程的时间。

数据训练并不是这篇文章的重点,这里仅仅说一下训练结果,这里为了防止CUDA周期对检测时间的影响,使用CPU跑推理过程。

如果您对数据的训练感兴趣,可以看我之前写的一篇文章:使用CNN做SQL和XSS的识别。

三、使用Tensorflow C库做推理

我们的目标是向Nginx加入一个使用Tensorflow C库的软WAF模块。如果从头开始写一个软WAF,想必会占用相当多的时间,并且这个也和这篇文章的主旨偏离。

在Nginx的开源的软WAF模块中,Naxsi是一个很受欢迎的模块。这个模块使用C作为主开发语言,因此,如果我们想基于这个模块加一个推理过程,很大可能性需要加入Tensorflow C库。那么,首先应该做的是,试着使用Tensorflow C库做单次推理,并做好模块测试。

Main文件如下:

编译完成后,可以跑一下数据,这里为了节省篇幅,仅测试一条

可见这部分代码已经可以正常工作了。

四、向Naxsi内加入代码

首先,回忆下Nginx的一些原理,Nginx在运行时使用fork,创建了一个master进程和若干worker进程,worker进程是实际处理数据的进程。每个模块的初始化函数,实际上是由初始化的进程来完成的,在这之后,如果配置了daemon,初始化的进程自动退出。

同时,为了便于理解,我们可以把推理流程拆分成这样几个部分:

1. 初始化模型 2. 将输入转化为Tensorflow识别的格式 3. 运行模型,获取结果

其中,步骤1仅需运行一次,步骤2,3在每次运行这个模块时都需要进行。

我对于Nginx理解不深,DaLao轻拍。

由于worker进程是fork产生的,实际上是无法使用初始化进程产生的model,所以,每个worker进程需要自己初始化一次自己的model相关资源。因此,新加入的函数应该类似这样:

这里,我仅仅检测uri内部的注入请求,其它部分的检测代码应该是非常相似的,这里就不再重复罗嗦了。

由于tf_model是在第一次调用模块时才会自动载入,因此,在这个服务器的每个worker进程第一次接受到数据时,可能会稍卡顿一下。

五、编译运行

将Naxsi和Nginx的代码同时复制到编译服务器内部,然后在编译Nginx时,包含下Naxsi的代码部分。

由于Nginx在编译时是不使用Tensorflow库的,所以我们需要手动修改下Makefile,在链接时自动加入Tensorflow库,最后编译。

然后,需要将Naxsi的配置文件复制到Nginx的conf文件夹内,配置Naxsi,并修改Nginx的配置文件,加入Naxsi模块。自定义一个403的Page,作为注入发生时的替换界面。然后,运行Nginx。

六、手注测试

这里使用简单的手注,测试模块是否正常运行。这里实际是不可能出现注入的情况的,如果有兴趣的话,可以加入DVWA等靶机,使用sqlmap等工具实际攻击。

七、总结

经过以上几个步骤,我们就得到了一个使用DL的Nginx的软WAF模块,并把它加入到了Nginx内。相比普通的规则匹配类的引擎,一般而言,这种方法的防御效果更加优秀。考虑漏报和误报率的话,使用测试集测试,可靠性提高了数倍。

当然,推理流程会对服务器本身的性能造成一定的影响,因此在实际的环境中,可能需要使用Tensorflow C GPU库来跑运算,或者将Nginx作为代理使用。

*本文作者:rochek,转载请注明来自FreeBuf.COM

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-02-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 FreeBuf 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、前言
  • 二、获取数据及训练数据
  • 三、使用Tensorflow C库做推理
  • 四、向Naxsi内加入代码
  • 五、编译运行
  • 六、手注测试
  • 七、总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档