Python从零开始第三章数据处理与分析python.query()函数

=============================================== 本文主要介绍使用python.query()函数对数据框进行(挑选行)的操作

  • 构建数据框
import pandas as pd
d={
    'name':['a','n','c','d','e','f'],
    'Gender':['male','female','male','male','female','female'],
    'age':[23,24,24,22,21,20],
    'hight':[173,174,164,172,161,160],
    'weight1':[53,74,44,62,71,60],
    'weight2':[53,64,54,66,81,50]
}
df=pd.DataFrame(d)
df
Out[6]: 
  name  Gender  age  hight  weight1  weight2
0    a    male   23    173       53       53
1    n  female   24    174       74       64
2    c    male   24    164       44       54
3    d    male   22    172       62       66
4    e  female   21    161       71       81
5    f  female   20    160       60       50
  • 一般来说如果进行行挑选,可以进行的操作是:
df[df.age==24]
Out[13]: 
  name  Gender  age  hight  weight1  weight2
1    n  female   24    174       74       64
2    c    male   24    164       44       54

df[(df.age==24 )&( df.hight ==174)]
Out[14]: 
  name  Gender  age  hight  weight1  weight2
1    n  female   24    174       74       64
  • 但是如果用python.query函数,则更加有逻辑且代码更优雅
df.query("age==24")
Out[20]: 
  name  Gender  age  hight  weight1  weight2
1    n  female   24    174       74       64
2    c    male   24    164       44       54

df.query("age==24").query('hight==174')
Out[21]: 
  name  Gender  age  hight  weight1  weight2
1    n  female   24    174       74       64
Out[29]: 
  name Gender  age  hight  weight1  weight2
0    a   male   23    173       53       53
2    c   male   24    164       44       54
3    d   male   22    172       62       66
df.query('index > 2')
Out[47]: 
  name  Gender  age  hight  weight1  weight2
3    d    male   22    172       62       66
4    e  female   21    161       71       81
5    f  female   20    160       60       50
df.query('Gender =="male" and name =="a"')
Out[30]: 
  name Gender  age  hight  weight1  weight2
0    a   male   23    173       53       53

df.query('Gender =="male" and age<24')
Out[31]: 
  name Gender  age  hight  weight1  weight2
0    a   male   23    173       53       53
3    d   male   22    172       62       66
  • 除此之外,query()函数还可以进行不同列之间的值对比:
df.query('weight1 > weight2')
Out[22]: 
  name  Gender  age  hight  weight1  weight2
1    n  female   24    174       74       64
5    f  female   20    160       60       50

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券