机器学习算法选择

对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“good enough”的算法来解决你的问题,或者这里有些技巧可以参考,因为其中会有一些基本准则。

数据集大小

首先来普及一下偏差和方差

  • 偏差:描述的是预测值(估计值)的期望E’与真实值T之间的差距。偏差越大,越偏离真实数据。
  • 方差:描述的是预测值P的变化范围,离散程度,也就是离其期望值E的距离。方差越大,数据的分布越分散。

模型的真实误差是两者之和:

如果是小训练集,高偏差/低方差的分类器(例如,朴素贝叶斯NB)要比低偏差/高方差大分类的优势(例如,KNN),因为后者会过度拟合。但是,随着你训练集的增长,低偏差/高方差分类器就会渐渐的表现其优势(因为它们有较低的渐近误差),因为高偏差分类器此时已经不足以提供准确的模型。

当然,你也可以认为这是生成模型与判别模型的一个区别。

为什么说朴素贝叶斯是高偏差低方差?

以下内容引自知乎:

首先,假设你知道训练集和测试集的关系。简单来讲是我们要在训练集上学习一个模型,然后拿到测试集去用,效果好不好要根据测试集的错误率来衡量。但很多时候,我们只能假设测试集和训练集的是符合同一个数据分布的,但却拿不到真正的测试数据。这时候怎么在只看到训练错误率的情况下,去衡量测试错误率呢? 由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的完美而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。 在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为Error = Bias + Variance。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性(Variance)。 所以,这样就容易分析朴素贝叶斯了。它简单的假设了各个数据之间是无关的,是一个被严重简化了的模型。所以,对于这样一个简单模型,大部分场合都会Bias部分大于Variance部分,也就是说高偏差而低方差。 在实际中,为了让Error尽量小,我们在选择模型的时候需要平衡Bias和Variance所占的比例,也就是平衡over-fitting和under-fitting。

一些常见算法的优势

1.朴素贝叶斯

属于生成式模型,非常简单,你只是做了一堆计数。如果注有条件独立性假设,朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征件的相互作用(例如,它不能学习出虽然你喜欢Brad Pitt和Tom Cruise的电影,但是你不喜欢他们在一起演的电影)。

优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点:对输入数据的表达形式很敏感。


2.Logistic Regression(逻辑回归)

属于判别式模型,有很多正则化模型的方法(L0, L1, L2, etc),而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与SVM机相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法)。如果你需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者你希望以后将更多的训练数据快速整合到模型中去,那么使用它吧。

Sigmoid函数:

优点:

  • 实现简单,广泛的应用于工业问题上;
  • 分类时计算量非常小,速度很快,存储资源低;
  • 便利的观测样本概率分数;
  • 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;

缺点:

  • 当特征空间很大时,逻辑回归的性能不是很好;
  • 容易欠拟合,一般准确度不太高
  • 不能很好地处理大量多类特征或变量;
  • 只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;
  • 对于非线性特征,需要进行转换;

3.线性回归

线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:

而在LWLR(局部加权线性回归)中,参数的计算表达式为:

由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。

优点: 实现简单,计算简单; 缺点: 不能拟合非线性数据.


4.最近领算法——KNN

KNN即最近邻算法,其主要过程为:

1. 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);
2. 对上面所有的距离值进行排序;
3. 选前k个最小距离的样本;
4. 根据这k个样本的标签进行投票,得到最后的分类类别;

如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。

近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。

KNN算法的优点

  • 思想简单,理论成熟,既可以用来做分类也可以用来做回归;
  • 可用于非线性分类;
  • 训练时间复杂度为O(n);
  • 准确度高,对数据没有假设,对outlier不敏感;

缺点

  • 计算量大;
  • 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
  • 需要大量的内存;

5.决策树

易于解释。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)。它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一丁点),它训练快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。

决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。

现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=v的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’ =p1 * H1+p2 * H2,则此时的信息增益ΔH = H - H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

决策树自身的优点

  • 计算简单,易于理解,可解释性强;
  • 比较适合处理有缺失属性的样本;
  • 能够处理不相关的特征。

缺点

  • 容易发生过拟合(随机森林可以很大程度上减少过拟合)。

6.支持向量机

高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

优点

  • 能够处理大型特征空间
  • 能够处理非线性特征的相互作用
  • 无需依赖整个数据

缺点

  • 当观测样本很多时,效率并不是很高
  • 有时候很难找到一个合适的核函数

算法选择参考

  1. 首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考;
  2. 然后试试决策树(随机森林)是否可以大幅度提升模型性能。即使你并没有把它当做最终模型,你也可以使用随机森林来移除噪声变量;
  3. 如果特征的数量和观测样本特别多,那么当资源和时间充足时,使用SVM不失为一种选择。

尽管如此,回想一下,好的数据却要优于好的算法,设计优良特征是大有裨益的。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就可以根据速度和易用性来进行抉择)。

参考文献

[0]http://blog.csdn.net/dream_angel_z/article/details/50752375

[1] http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/ [2] https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

原文发布于微信公众号 - 机器学习与统计学(tjxj666)

原文发表时间:2018-08-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券