专栏首页机器学习与统计学R in action读书笔记(19)第十四章 主成分和因子分析

R in action读书笔记(19)第十四章 主成分和因子分析

第十四章:主成分和因子分析

本章内容

主成分分析

探索性因子分析

其他潜变量模型

主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。它通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。

PCA与EFA模型间的区别

主成分(PC1和PC2)是观测变量(X1到X5)的线性组合。形成线性组合的权重都是通过最大化各主成分所解释的方差来获得,同时还要保证个主成分间不相关。相反,因子(F1和F2)被当做是观测变量的结构基础或“原因”,而不是它们的线性组合。代表观测变量方差的误差(e1到e5)无法用因子来解释。图中的圆圈表示因子和误差无法直接观测,但是可通过变量间的相互关系推导得到

14.1 R 中的主成分和因子分析

psych包中有用的因子分析函数

principal()

含多种可选的方差旋转方法的主成分分析

fa()

可用主轴、最小残差、加权最小平方或最大似然法估计的因子分析

fa.parallel()

含平行分析的碎石图

factor.plot()

绘制因子分析或主成分分析的结果

fa.diagram()

绘制因子分析或主成分的载荷矩阵

scree()

因子分析和主成分分析的碎石图

最常见的步骤:

(1) 数据预处理。PCA和EFA都根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或者相关系数矩阵到principal()和fa()函数中。若输入初始数据,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值。

(2) 选择因子模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的研究目标。如果选择EFA方法,你还需要选择一种估计因子模型的方法(如最大似然估计)。

(3) 判断要选择的主成分/因子数目。

(4) 选择主成分/因子。

(5) 旋转主成分/因子。

(6) 解释结果。

(7) 计算主成分或因子得分。

14.2 主成分分析

PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。如第一主成分为:PC1=a1X1+a2X 2+……+ak Xk它是k个观测变量的加权组合,对初始变量集的方差解释性最大。第二主成分也是初始变量的线性组合,对方差的解释性排第二,同时与第一主成分正交(不相关)。后面每一个主成分都最大化它对方差的解释程度,同时与之前所有的主成分都正交。数据集USJudgeRatings为例,数据框包含43个观测,12个变量。

变 量

描 述

CONT

律师与法官的接触次数

INTG

法官正直程度

DMNR

风度

DILG

勤勉度

CFMG

案例流程管理水平

DECI

决策效率

PREP

审理前的准备工作

FAMI

对法律的熟稔程度

ORAL

口头裁决的可靠度

WRIT

书面裁决的可靠度

PHYS

体能

RTEN

是否值得保留

14.2.1 判断主成分的个数

判断PCA中需要多少个主成分的准则:

根据先验经验和理论知识判断主成分数;

根据要解释变量方差的积累值的阈值来判断需要的主成分数;

通过检查变量间k × k的相关系数矩阵来判断保留的主成分数。

利用fa.parallel()函数,可以同时对三种特征值判别准则进行评价

> fa.parallel(USJudgeRatings[,-1],fa="PC",n.iter=100,

+ show.legend=FALSE,

+ main="Scree plotwith parallel analysis")

评价美国法官评分中要保留的主成分个数。碎石图(直线与x符号)、特征值大于1准则(水平线)和100次模拟的平行分析(虚线)都表明保留一个主成分即可。三种准则表明选择一个主成分即可保留数据集的大部分信息

14.2.2 提取主成分

principal()函数可以根据原始数据矩阵或者相关系数矩阵做主成分分析。格式为:principal(r,nfactors=,rotate=,scores=)

r是相关系数矩阵或原始数据矩阵;

nfactors设定主成分数(默认为1);

rotate指定旋转的方法[默认最大方差旋转(varimax)

scores设定是否需要计算主成分得分(默认不需要)。

> pc<-principal(USJudgeRatings[,-1],nfactors=1)

> pc

Principal Components Analysis

Call: principal(r = USJudgeRatings[, -1], nfactors = 1)

Standardized loadings (pattern matrix) based upon correlation matrix

PC1 h2 u2

INTG 0.92 0.84 0.1565

DMNR 0.91 0.83 0.1663

DILG 0.97 0.94 0.0613

CFMG 0.96 0.93 0.0720

DECI 0.96 0.92 0.0763

PREP 0.98 0.97 0.0299

FAMI 0.98 0.95 0.0469

ORAL 1.00 0.99 0.0091

WRIT 0.99 0.98 0.0196

PHYS 0.89 0.80 0.2013

RTEN 0.99 0.97 0.0275

PC1

SS loadings 10.13

Proportion Var 0.92

由于PCA只对相关系数矩阵进行分析,在获取主成分前,原始数据将会被自动转换为相关系数矩阵。PC1栏包含了成分载荷,指观测变量与主成分的相关系数。如果提取不止一个主成分,那么还将会有PC2、PC3等栏。成分载荷(component loadings)可用来解释主成分的含义。此处可以看到,第一主成分(PC1)与每个变量都高度相关,也就是说,它是一个可用来进行一般性评价的维度。

h2栏指成分公因子方差——主成分对每个变量的方差解释度。u2栏指成分唯一性——方差无法被主成分解释的比例.如,体能(PHYS)80%的方差都可用第一主成分来解释,20%不能。相比而言,PHYS是用第一主成分表示性最差的变量。SS loadings行包含了与主成分相关联的特征值,指的是与特定主成分相关联的标准化后的方差值(本例中,第一主成分的值为10)。最后,Proportion Var行表示的是每个主成分对整个数据集的解释程度。此处可以看到,第一主成分解释了11个变量92%的方差。

14.2.3 主成分旋转

旋转是一系列将成分载荷阵变得更容易解释的数学方法,它们尽可能地对成分去噪。旋转方

法有两种:使选择的成分保持不相关(正交旋转),和让它们变得相关(斜交旋转)。旋转方法也会依据去噪定义的不同而不同。最流行的正交旋转是方差极大旋转,它试图对载荷阵的列进行去噪,使得每个成分只是由一组有限的变量来解释(即载荷阵每列只有少数几个很大的载荷,其他都是很小的载荷)。

方差极大旋转的主成分分析

>rc<-principal(Harman23.cor$cov,nfactors=2,rotate="varimax")

> rc

Principal Components Analysis

Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate ="varimax")

Standardized loadings (pattern matrix) based upon correlation matrix

RC1 RC2 h2 u2

height 0.90 0.25 0.88 0.123

arm.span 0.93 0.19 0.90 0.097

forearm 0.92 0.16 0.87 0.128

lower.leg 0.90 0.22 0.86 0.139

weight 0.26 0.88 0.85 0.150

bitro.diameter 0.19 0.84 0.74 0.261

chest.girth 0.11 0.84 0.72 0.283

chest.width 0.26 0.75 0.62 0.375

RC1 RC2

SS loadings 3.52 2.92

Proportion Var 0.44 0.37

Cumulative Var 0.44 0.81

观察RC1栏的载荷,你可以发现第一主成分主要由前四个变量来解释(长度变量)。RC2栏的载荷表示第二主成分主要由变量5到变量8来解释(容量变量),两个主成分旋转后的累积方差解释性没有变化(81%),变的只是各个主成分对方差的解释度(成分1从58%变为44%,成分2从22%变为37%)。各成分的方差解释度趋同,准确来说,此时应该称它们为成分而不是主成分(因为单个主成分方差最大化性质没有保留)。

14.2.4 获取主成分得分

从原始数据中获取成分得分

> library(psych)

> pc<-principal(USJudgeRatings[,-1],nfactors=1,score=TRUE)

> head(pc$scores)

PC1

AARONSON,L.H. -0.1857981

ALEXANDER,J.M. 0.7469865

ARMENTANO,A.J. 0.0704772

BERDON,R.I. 1.1358765

BRACKEN,J.J. -2.1586211

BURNS,E.B. 0.7669406

当scores = TRUE时,主成分得分存储在principal()函数返回对象的scores元素中。

还可以获得律师与法官的接触频数与法官评分间的相关系数:

> cor(USJudgeRatings$CONT,pc$score)

PC1

[1,] -0.008815895

律师与法官的熟稔度与律师的评分毫无关联

获取主成分得分的系数

> library(psych)

>rc<-principal(Harman23.cor$cov,nfactors=2,rotate="varimax")

> round(unclass(rc$weights),2)

RC1 RC2

height 0.28 -0.05

arm.span 0.30 -0.08

forearm 0.30 -0.09

lower.leg 0.28 -0.06

weight -0.06 0.33

bitro.diameter -0.08 0.32

chest.girth -0.10 0.34

chest.width -0.04 0.27

主成分得分:

PC1=0.25*height+0.3*arm.span+0.3*forearm+0.29*lower.leg-0.06*weight-0.08*bitro.diameter-0.1*chest.girth-0.04*chest.width

14.3 探索性因子分析

EFA的目标是通过发掘隐藏在数据下的一组较少的、更为基本的无法观测的变量,来解释一组可观测变量的相关性。这些虚拟的、无法观测的变量称作因子。(每个因子被认为可解释多个观测变量间共有的方差,因此准确来说,它们应该称作公共因子。)模型的形式为:

其中Xi是第i个可观测变量(i = 1…k),Fj是公共因子(j = 1…p),并且p<kUiXi变量独有的部分(无法被公共因子解释)。ai可认为是每个因子对复合而成的可观测变量的贡献值。

> options(digits=2)

> covariances<-ability.cov$cov

> correlations<-cov2cor(covariances)

> correlations

general picture blocks mazereading vocab

general 1.00 0.47 0.55 0.34 0.58 0.51

picture 0.47 1.00 0.57 0.19 0.26 0.24

blocks 0.55 0.57 1.00 0.45 0.35 0.36

maze 0.34 0.19 0.45 1.00 0.18 0.22

reading 0.58 0.26 0.35 0.18 1.00 0.79

vocab 0.51 0.24 0.36 0.22 0.79 1.00

14.3.1 判断需提取的公共因子数

用fa.parallel()函数可判断需提取的因子数:

> library(psych)

> covariances<-ability.cov$cov

> correlations<-cov2cor(covariances)

> fa.parallel(correlations,n.obs=112,fa="both",n.iter=100,

+ main="Screeplots with parrallel analysis")

判断心理学测验需要保留的因子数。图中同时展示了PCA和EFA的结果。PCA结果建议提取一个或者两个成分,EFA建议提取两个因子

14.3.2 提取公共因子

决定提取两个因子,可以使用fa()函数获得相应的结果。fa()函数的格式如下:fa(r,nfactors=,n.obs=,rotate=,scores=,fm=)

r是相关系数矩阵或者原始数据矩阵;

nfactors设定提取的因子数(默认为1);

n.obs是观测数(输入相关系数矩阵时需要填写);

rotate设定旋转的方法(默认互变异数最小法);

scores设定是否计算因子得分(默认不计算);

fm设定因子化方法(默认极小残差法)。

与PCA不同,提取公共因子的方法很多,包括最大似然法(ml)、主轴迭代法(pa)、加权最小二乘法(wls)、广义加权最小二乘法(gls)和最小残差法(minres)未旋转的主轴迭代因子法:

> fa<-fa(correlations,nfactors=2,rotate="none",fm="pa")

> fa

Factor Analysis using method = pa

Call: fa(r = correlations, nfactors = 2, rotate = "none", fm ="pa")

Standardized loadings (pattern matrix) based upon correlation matrix

PA1 PA2 h2 u2 com

general 0.75 0.07 0.57 0.432 1.0

picture 0.52 0.32 0.38 0.623 1.7

blocks 0.75 0.52 0.83 0.166 1.8

maze 0.39 0.22 0.20 0.798 1.6

reading 0.81 -0.51 0.91 0.089 1.7

vocab 0.73 -0.39 0.69 0.313 1.5

PA1 PA2

SS loadings 2.75 0.83

Proportion Var 0.46 0.14

Cumulative Var 0.46 0.60

两个因子解释了六个心理学测验60%的方差。不过因子载荷阵的意义并不太好解释,此时使用因子旋转将有助于因子的解释。

14.3.3 因子旋转

用正交旋转提取因子

> fa.varimax<-fa(correlations,nfactors=2,rotate="varimax",fm="pa")

> fa.varimax

Factor Analysis using method = pa

Call: fa(r = correlations, nfactors = 2, rotate = "varimax", fm= "pa")

Standardized loadings (pattern matrix) based upon correlation matrix

PA1 PA2 h2 u2 com

general 0.49 0.57 0.57 0.432 2.0

picture 0.16 0.59 0.38 0.623 1.1

blocks 0.18 0.89 0.83 0.166 1.1

maze 0.13 0.43 0.20 0.798 1.2

reading 0.93 0.20 0.91 0.089 1.1

vocab 0.80 0.23 0.69 0.313 1.2

PA1 PA2

SS loadings 1.83 1.75

Proportion Var 0.30 0.29

Cumulative Var 0.30 0.60

结果显示因子变得更好解释了。阅读和词汇在第一因子上载荷较大,画图、积木图案和迷宫在第二因子上载荷较大,非语言的普通智力测量在两个因子上载荷较为平均,这表明存在一个语言智力因子和一个非语言智力因子。

用斜交旋转提取因子:

> fa.promax<-fa(correlations,nfactors=2,rotate="promax",fm="pa")

> fa.promax

Factor Analysis using method = pa

Call: fa(r = correlations, nfactors = 2, rotate = "promax", fm ="pa")

PA1 PA2 h2 u2 com

general 0.36 0.49 0.57 0.432 1.8

picture -0.04 0.64 0.38 0.623 1.0

blocks -0.12 0.98 0.83 0.166 1.0

maze -0.01 0.45 0.20 0.798 1.0

reading 1.01 -0.11 0.91 0.089 1.0

vocab 0.84 -0.02 0.69 0.313 1.0

PA1 PA2

SS loadings 1.82 1.76

Proportion Var 0.30 0.29

Cumulative Var 0.30 0.60

With factor correlations of

PA1 PA2

PA1 1.00 0.57

PA2 0.57 1.00

根据以上结果,你可以看出正交旋转和斜交旋转的不同之处。对于正交旋转,因子分析的重点在于因子结构矩阵(变量与因子的相关系数),而对于斜交旋转,因子分析会考虑三个矩阵:因子结构矩阵、因子模式矩阵和因子关联矩阵。因子模式矩阵即标准化的回归系数矩阵。它列出了因子预测变量的权重。因子关联矩阵即因子相关系数矩阵。factor.plot()或fa.diagram()函数,你可以绘制正交或者斜交结果的图形。

> fa.diagram(fa.promax,simple=FALSE)

14.3.4 因子得分

EFA并不那么关注计算因子得分。在fa()函数中添加score = TRUE选项(原始数据可得时)便可很轻松地获得因子得分。

> fa.promax$weights

[,1] [,2]

general 0.080 0.210

picture 0.021 0.090

blocks 0.044 0.695

maze 0.027 0.035

reading 0.739 0.044

vocab 0.176 0.039

14.5 小结

欢迎关注

本文分享自微信公众号 - 机器学习与统计学(tjxj666)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2015-05-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 打破机器学习中的小数据集诅咒

    最近深度学习技术实现方面取得的突破表明,顶级算法和复杂的结构可以将类人的能力传授给执行特定任务的机器。但我们也会发现,大量的训练数据对深度学习模型的成功起着至关...

    统计学家
  • Lagrange、Newton、分段插值法及Python实现

    数据分析中,经常需要根据已知的函数点进行数据、模型的处理和分析,而通常情况下现有的数据是极少的,不足以支撑分析的进行,这里就需要使用差值法模拟新的数值来满足需求...

    统计学家
  • 数据科学家易犯的十大编码错误,你中招了吗?

    我是一名高级数据科学家,在 Stackoverflow 的 python 编码中排前 1%,而且还与众多(初级)数据科学家一起工作。下文列出了我常见到的 10 ...

    统计学家
  • 深度对比delta、iceberg和hudi三大开源数据湖方案

    目前市面上流行的三大开源数据湖方案分别为:delta、Apache Iceberg和Apache Hudi。其中,由于Apache Spark在商业化上取得巨大...

    大数据技术架构
  • 仅用200个样本就能得到当前最佳结果:手写字符识别新模型TextCaps

    由于深度学习模型近期取得的进展,对于许多主流语言来说,手写字符识别已经是得到解决的问题了。但对于其它语言而言,由于缺乏足够大的、用来训练深度学习模型的标注数据集...

    磐创AI
  • 仅用200个样本就能得到当前最佳结果:手写字符识别新模型TextCaps

    由于深度学习模型近期取得的进展,对于许多主流语言来说,手写字符识别已经是得到解决的问题了。但对于其它语言而言,由于缺乏足够大的、用来训练深度学习模型的标注数据集...

    机器之心
  • 数据地图多图层对象的颜色标度重叠问题解决方案

    一篇旧文,解决一个困扰已经的小技术问题,权当是学习ggplot2以来的整理回顾与查漏补缺。 ---- 今天这一篇是昨天推送的基础上进行了进一步的深化,主要讲如何...

    数据小磨坊
  • 2018-11-07 Spark应用程序开发参数调优深入剖析-Spark商业调优实战

    本套系列博客从真实商业环境抽取案例进行总结和分享,并给出Spark商业应用实战指导,请持续关注本套博客。版权声明:本套Spark商业应用实战归作者(秦凯新)所有...

    Albert陈凯
  • 近期爆火的Meta Learnjng,遗传算法与深度学习的火花,再不了解你就out了(附github代码)!

    url:[https://arxiv.org/pdf/1703.01513](https://arxiv.org/pdf/1703.01513)

    机器学习算法工程师
  • LightGBM大战XGBoost,谁将夺得桂冠?

    如果你是一个机器学习社区的活跃成员,你一定知道 **提升机器**(Boosting Machine)以及它们的能力。提升机器从AdaBoost发展到目前最流行的...

    机器学习算法工程师

扫码关注云+社区

领取腾讯云代金券