专栏首页木木在学习win10 tensorflow笔记3 MNIST机器学习进阶

win10 tensorflow笔记3 MNIST机器学习进阶

1训练

建立py文件(我这里是shuzi.py

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

mnist = input_data.read_data_sets('./', one_hot=True) #MNIST数据集所在路径

x = tf.placeholder(tf.float32, [None, 784])

y_ = tf.placeholder(tf.float32, [None, 10])


def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev = 0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)
    return tf.Variable(initial)

def conv2d(x,W):
    return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = 'SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x,[-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

saver = tf.train.Saver() #定义saver

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy = accuracy.eval(feed_dict={
                x: batch[0], y_: batch[1], keep_prob: 1.0})
            print('step %d, training accuracy %g' % (i, train_accuracy))
        train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    saver.save(sess, './model') #模型储存位置

    print('test accuracy %g' % accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

运行shuzi.py

2测试

1.制作图片 打开制图 属性中把像素设为28 28

然后画出数字 保存为png格式。

2.cmd下载pillow和 matplotlib

pip install  -i https://pypi.tuna.tsinghua.edu.cn/simple Pillow
pip install  -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib

4.建立py文件(我这里是testshuzi.py

from PIL import Image, ImageFilter
import tensorflow as tf
import matplotlib.pyplot as plt

def imageprepare():
    im = Image.open('./4.png') #读取的图片所在路径,注意是28*28像素
    plt.imshow(im)  #显示需要识别的图片
    plt.show()
    im = im.convert('L')
    tv = list(im.getdata())
    tva = [(255-x)*1.0/255.0 for x in tv]
    return tva

result=imageprepare()
x = tf.placeholder(tf.float32, [None, 784])

y_ = tf.placeholder(tf.float32, [None, 10])

def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev = 0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)
    return tf.Variable(initial)

def conv2d(x,W):
    return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = 'SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x,[-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, './model') #使用模型,参数和之前的代码保持一致

    prediction=tf.argmax(y_conv,1)
    predint=prediction.eval(feed_dict={x: [result],keep_prob: 1.0}, session=sess)

    print('识别结果:')
    print(predint[0])

运行testshuzi.py

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • win10 tensorflow笔记2 MNIST机器学习入门

    这里跟官方有两处不同 1:第1行代码原文是import input_data这里的input_data是无法直接导入的。需要给出具体路径from tensor...

    我是木木酱呀
  • win 10 tensorflow笔记1 安装

    1.anaconda创建python3.6环境 2.打开py3.6环境的cmd cd进想安装的文件夹 创建文件夹内的虚拟环境:python -m venv ...

    我是木木酱呀
  • win10 tensorflow笔记4 查看tensorflow版本

    我是木木酱呀
  • 基于tensorflow实现简单卷积神经网络Lenet5

    徐飞机
  • python实现最大似然函数与结果展示

    AI之禅
  • win10 tensorflow笔记2 MNIST机器学习入门

    这里跟官方有两处不同 1:第1行代码原文是import input_data这里的input_data是无法直接导入的。需要给出具体路径from tensor...

    我是木木酱呀
  • TensorFlow2.X学习笔记(1)--TensorFlow核心概念

    TensorFlow™ 是一个采用 数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(e...

    MiChong
  • TensorFlow2.X学习笔记(2)--TensorFlow的层次结构介绍

    MiChong
  • TensorFlow2.X学习笔记(3)--TensorFlow低阶API之张量

    TensorFlow提供的方法比numpy更全面,运算速度更快,如果需要的话,还可以使用GPU进行加速。

    MiChong
  • TensorFlow2.X学习笔记(4)--TensorFlow低阶API之AutoGraph相关研究

    而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。

    MiChong

扫码关注云+社区

领取腾讯云代金券