专栏首页生信小驿站R语言与生信系列①(R入门与临床三线表绘制)

R语言与生信系列①(R入门与临床三线表绘制)

我们一直努力为大家分享科研干货。从今天起,MedGo干货课堂上线啦

首次分享课讲的是TCGA数据分析,探究某一因素与肿瘤临床数据之间的关系,并自动生成可以用于SCI发表的三线表,如下图所示:

MedGo干货课题课程链接:https://m.qlchat.com/wechat/page/channel-intro?channelId=2000004352037294&shareKey=46a3afe0e2ee408fe98e99c69dc1f3bf&sourceNo=link&userSourceId=c816d24d312c&shareSourceId=z6p4e16a29d52774&from=singlemessage

我们在千聊上的直播间为 MedGo干货课堂,由生物信息界的小红人左手柳叶刀右手小鼠标同学分享~

本期视频免费,不过需要我们发送千聊优惠券,前期会有9张优惠券直接领(不要问我为啥是9张啊,我想写999张的)需要代码和资料的话请您关注医科狗微信公众号:

回复三线表可获取本次课程的代码和课件

回复20190417获取优惠券啦

代码分享:

#清除环境变量

rm(list=ls()) 



#加载所需的包

library("survival")

library("survminer")

library(dplyr)



#设置参数

options(stringsAsFactors = F)



#修改工作目录

setwd("C:\\Users\\czh\\Desktop\\material")



#读取数据

data <-  read.csv("dat.csv",header = T)



#删除缺失观测值

data <- na.omit(data)







#age单因素分析

data_age  <- data %>%

  dplyr::select(OS.Time, OS,age,ID)





res.cox <- coxph(Surv(OS.Time, OS) ~ age, data = data_age)

summary(res.cox)







#age数据提取

data_age  <- data_age %>%

  dplyr::select(age,ID)







#性别统计

tbl <- table(data$gender)

cbind(tbl,prop.table(tbl))







#gender数据提取

data_gender <- data

data_gender  <- data %>%

  dplyr::select(OS.Time, OS,gender,ID)





#gender单因素分析



data_gender <- subset(data_gender,gender =='FEMALE'| gender =='MALE')





data_gender$gender <- ifelse(data_gender$gender == 'FEMALE','1FEMALE','0MALE')



res.cox <- coxph(Surv(OS.Time, OS) ~ gender, data =data_gender)



summary(res.cox)







#grade数据提取

data_grade <- data

data_grade  <- data %>%

  dplyr::select(OS.Time, OS,grade,ID)





#grade单因素分析

data_grade  <- subset(data_grade ,grade=='High Grade'| grade=='Low Grade')

data_grade$grade <- ifelse(data_grade$grade == 'High Grade','1High','0low')

res.cox <- coxph(Surv(OS.Time, OS) ~ grade, data =data_grade )

summary(res.cox)







#tcell数据提取

data_tcell <- data

data_tcell  <- data %>%

  dplyr::select(OS.Time, OS,Tcell,ID)



#tcell单因素分析

data_tcell$Tcell <- ifelse(data_tcell$Tcell < median(data_tcell[,'Tcell']),'0low','1high ')





res.cox <- coxph(Surv(OS.Time, OS) ~Tcell, data = data_tcell)

summary(res.cox)







#tcell数据提取

data_tcell <- data

data_tcell  <- data %>%

  dplyr::select(Tcell,ID)





#stage数据提取

data_stage <- data

data_stage  <- data %>%

  dplyr::select(OS.Time, OS,stage,ID)



#stage单因素分析

data_stage <- subset(data_stage, stage=='Stage II'|stage=='Stage III'| stage=='Stage IV')



res.cox <- coxph(Surv(OS.Time, OS) ~ stage, data =data_stage)

summary(res.cox)





#多因素分析数据准备

data_new <- merge(data_age,data_stage,by='ID')  

data_new <- merge(data_new,data_tcell,by='ID')  





#多因素分析

res.cox <- coxph(Surv(OS.Time, OS) ~ age + stage  + Tcell , 

                 data = data_new  )

summary(res.cox)

qrcode_for_gh_2f89822775fb_344.jpg

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 单基因生信分析流程(3)一文解决生存分析和临床参数相关分析

    用户1359560
  • R语言绘制三线表

    在进行文章的撰写时,总是少不了一些表格的绘制,当然最标准的表格就是三线表了。我一般用word绘制三线表,但是R语言也可以且比较省时间。

    用户1359560
  • Python常见数据框操作①

    用户1359560
  • 基于R语言利用QQ群进行数据挖掘案例整理

           利用QQ群进行数据挖掘案例,数据源来源于2016年12-2017年大致一个月的QQ群基本数据,通过对聊天内容的分析,了解QQ聊天群资料了解时间,人...

    学到老
  • 使用脚手架应用做单元测试

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    Jerry Wang
  • python实现在线翻译

    砸漏
  • SAP Spartacus里使用Observable访问Component数据

    在自定义Component的constructor里,无法直接访问通过构造函数参数注入的data数据:

    Jerry Wang
  • Python:base64图像数据处理

    弄啥嘞
  • 【go】剑指offer:常见排序算法

    冒泡排序是比较简单的排序算法,它的关键思想是移动指针不断的进行两两比较,将最大的数字不断的进行更换位置,直至到最后,即完成一趟比较,都会寻找到最大的数字,且最大...

    陌无崖
  • go实现利用最大堆寻找最小k个数

    昨天分享了寻找最小k个数的算法是,那么有没有更为迅速的方法呢?今天就来分享关于如何使用最大堆进行解决。

    陌无崖

扫码关注云+社区

领取腾讯云代金券