《深度无监督学习》伯克利Pieter Abbeel新开课程(含视频PPT)

【导读】Pieter Abbeel 是加州大学伯克利分校的教授,伯克利机器人学习实验室的主任,其新开课程CS294深度无监督学习包含两个领域,分别是生成模型和自监督学习。这个15周的课程包含视频PPT能资源,有助于读者对深度学习无监督的理解。

老师介绍

Pieter Abbeel,加州大学伯克利分校教授、机器人学习实验室主任,伯克利人工智能研究(BAIR)实验室联合主任。

Pieter Abbeel是机器人和强化学习领域的大牛。Pieter Abbeel 2008年从斯坦福大学获得博士学位,师从百度前首席科学家 Andrew Ng(吴恩达),毕业后在UC Berkeley任教。

2016~2017年,Pieter Abbeel加入Open AI,任研究科学家。现在则是Open AI顾问。

Pieter Abbeel还是两家AI公司的创始人,Gradescope和covariant.ai。Gradescope开发为家庭作业、课题研究、试卷等打分的AI系统;covariant.ai开发机器人自动化的AI系统,在制造/仓储/电子商务/物流等领域应用。

Pieter Abbeel 的研究重点特别集中于如何让机器人向人类学习(学徒学习),如何让机器人通过自己的试错过程学习(强化学习),以及如何通过从learning-to-learn(元学习)过程中加快技能获取。他开发的机器人已经学会了先进的直升机特技飞行、打结、基本装配、叠衣服、移动、以及基于视觉的机器人操作。

其他三位助教Peter Chen、Rocky Duan和Tianhao Zhang三人均是华人,且目前都是Abbeel在伯克利的博士生。

CS294-158 深度无监督学习 2019年春

关于:本课程将涵盖深度学习中不需要标注数据的两个领域:深度生成模型和自监督学习。生成模型的最新进展使得对自然图像、音频波形和文本语料库等高维原始数据进行真实建模成为可能。自监督学习的进步已经开始缩小监督表示学习和非监督表示学习之间的差距,本课程将涵盖这些主题的理论基础以及它们的新应用。

Week 1

第1a讲: 课程安排

第1b讲: 课程动机

第1c讲: 基于似然的模型 Part I: 自回归模型

Week 2

第2a讲: 基于似然的模型 Part I: 自回归模型 (ctd)

第2b讲: 无损压缩(Lossless Compression)

第2c讲: 基于似然的模型 Part II: 流模型

Week 3

第3a讲:基于似然的模型 Part II:流模型(ctd)

第3b讲:隐变量模型

Week 4

第4a讲:隐变量模型(ctd)(与第3周ppt相同)

第4b讲:比特编码/位反编码

Week 5

第5讲:隐式模型/生成对抗网络

Week 6

第六讲:非生成性表征学习

Week 7

第7a讲:非生成表征学习(ctd)

第7b讲:半监督学习

Week 8

第8讲:表征学习+其他问题

Week 9

第9a讲:无监督分布对齐

第9b讲:客座讲座:Ilya Sutskever

Week 10

第10a讲:无监督分配对齐(ctd)

第10b讲:客座讲座:Durk Kingma

Week 11

第11讲:语言模型(Alec Radford)

Week 12

第12a讲:无监督的表征学习

第12b讲:客座讲座Alyosha Efros

Week 13

第13a讲:待定(TBD)

第13b讲:客座讲座Aaron van den Oord

Week 14

没有课

Week 15

期末项目报告

课程PPT:

https://drive.google.com/file/d/10j_XbM-NUq0RiQz1wZckA0d23ppOS2EH/view

课程视频连接:

https://youtu.be/zNmvH6OXDpk

附第一课视频和PPT

视频内容

参考链接:

https://sites.google.com/view/berkeley-cs294-158-sp19/home

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2019-02-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券