前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >博客 | 机器学习算法系列(一):logistic回归

博客 | 机器学习算法系列(一):logistic回归

作者头像
AI研习社
发布2019-05-08 16:34:37
5730
发布2019-05-08 16:34:37
举报
文章被收录于专栏:AI研习社AI研习社

作者 | Ray

编辑 | 安可

出品 | 磐创AI技术团队

目录:

一、Logistic分布

二、二项Logistic回归原理

三、参数估计

四、Logistic回归的正则化

五、Logistic回归和线性回归区别

六、为什么Logistic回归的输入特征一般都是离散化而不是连续的?

七、Logistic回归和SVM的关系

一、Logistic分布

定义:X是连续随机变量,X服从logistic分布,则X具有下列的分布函数和密度函数:

其中,μ为位置参数,γ为形状参数

曲线在中心附近增长速度较快,并且γ值越小,曲线在中心附近的增长速度越快。

特别的,当μ=0,γ=1的时候就是sigmoid函数。

二、二项Logistic回归原理

二项Logistic回归模型时一种分类模型,由条件概率分布P(Y|X)表示,随机变量Y取0或1。

定义二项logistic回归模型的条件分布如下:

其中x∈Rn是输入,Y∈{0,1}是输出,W∈Rn和b∈R是参数,w称为权重,b称为偏置。

有时为了方便会将权重向量和输入向量进行扩充:

w = (w1,w2, …, wn, b)T, x = (x1,x2, …, xn, 1)T

所以,logistic回归模型变为:

得到概率之后,我们可以通过设定一个阈值将样本分成两类。如:阈值为0.5的时候,当大于0.5则为一类,小于0.5为另一类。

三、参数估计

有了以上的模型,我们就需要对模型中的参数w求出来。我们可以使用极大似然估计法估计模型的参数。

设:

似然函数为:

对数似然函数:

对L(w)求极大值,得到w的估计值。通常采用梯度下降法或拟牛顿法求解参数w。

四、Logistic回归的正则化

正则化是为了解决过拟合问题。分为L1和L2正则化。目标函数中加入正则化,即加入模型复杂性的评估。正则化符合奥卡姆剃刀原理,即:在所有可能的模型中,能够很好的解释已知数据并且十分简单的模型才是最好的模型。

加入正则化后,模型的目标函数变为:

P表示范数,p=1为L1正则化,p=2为L2正则化

L1正则化:向量中各元素绝对值的和。关键在于能够对特征进行自动选择,稀疏参数可以减少非必要的特征引入噪声。

L2正则化:向量中个元素的平方和,L2会使得各元素尽可能小,但都不为零。

左边为L1正则化,右边为L2正则化。假设权重参数w只有二维w1和w2。L1为各元素绝对值和,即|w1|+|w2| = C,则得到的形状为棱形,L2为(w1)^2+(w2)^2 = C,则形状为圆。很容易可以发现L1更容易在顶点处相切,L2则不容易在顶点处相切。顶点处则其中一个参数为0,这就是为什么L1会使得参数稀疏的原因。

五、Logistic回归和线性回归区别

1. Logistic回归在线性回归的实数输出范围加上sigmoid函数,将输出值收敛在0~1之间。其目标函数也因此从差平方和函数变为对数损失函数。

2. 逻辑回归和线性回归都是广义的线性回归,线性回归是使用最小二乘法优化目标函数,而逻辑回归是使用梯度下降或者拟牛顿法。

3. 线性回归在整个实数域范围内进行预测,敏感度一致,而分类范围需要在[0,1]。逻辑回归是一种减少预测范围,将预测值限定为[0,1]间的一种回归模型。因而对于二分类问题,逻辑回归的鲁棒性更好。

4. 逻辑回归是以线性回归为理论支持的,但线性回归模型无法做到sigmoid的非线性形式。Sigmoid可以轻松处理0/1分类问题。

六、为什么Logistic回归的输入特征一般都是离散化而不是连续的?

1. 离散特征容易增加和减少,使得模型容易迭代。

2. 离散特征的内积运算速度快,计算结果方便存储。

3. 对异常值不敏感,比如一个特征是年龄>30为1,否则为0,如果特征没有离散化。一个异常数据300岁会给模型带来很大的干扰。

4. 逻辑回归是广义线性模型,表达能力受限。单变量离散化为N个后,每个变量都有单独的权重,相当于为模型引入了非线性,能够提升模型的表达能力,加大拟合。

5. 特征离散化后可以进行特征交叉,由M+N变量变为M*N个变量,进一步引入非线性,提升表达能力。

6. 特征离散化后,模型会更加稳定。比如对用户年龄离散化,将20~30作为一个区间,这样不会因为一个用户年龄大了一岁就变成完全不同的人了,当然处于区间相邻处的样本就刚好相反,所以怎么划分区间是们学问。

7. 特征离散化后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

七、Logistic回归和SVM的关系

1. LR和SVM都可以处理分类问题,且一般都处理线性二分类问题。

2. LR是参数模型,SVM是非参数模型。

3. LR的目标函数是对数似然函数,SVM的目标函数是hinge损失函数。这两个函数都是增加对分类结果影响较大的数据点的权重,减少影响较小的数据点的权重。

4. SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。

5. 逻辑回归相对来说模型更简单,好理解,特别是大规模线性分类时比较方便。而SVM的理解和优化相对来说复杂一些,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。

6. logic能做的 svm能做,但可能在准确率上有问题,svm能做的logic有的做不了。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-04-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI研习社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档