新智元报道
来源:paperswithcode.com
编辑:肖琴
工欲善其事,必先利其器。
在人工智能这个大热领域,想要追踪所有最新进展并不容易。
我们在去年介绍了Papers with Code这个网站,这是一个找到论文代码的“神器”。它将 ArXiv 上的最新机器学习论文与 GitHub 上的代码联系起来。这个项目索引了大约 5 万篇论文和 1 万个 GitHub 库,你可以按标题关键词查询,也可以按流行程度、GitHub 星星数排列 “热门研究”。
这个网站能让你跟上 ML 社区流行的最新动态。
Paper with code趋势
但是,仅仅能迅速浏览热门研究并找到代码还不够,做某一领域的研究,先了解现在该领域的state-of-the-art技术是必要的。
好消息是,Papers with Code团队刚刚发布了最新版本的Papers with Code网站。他们从庞大的数据库中提取了950+单独的ML任务,500+个评估表(包含SOTA结果),以及8500+篇公开了代码的论文。
传送门:
https://paperswithcode.com/sota
网站上的所有内容都是可编辑的,网站上的tasks和sota数据对发现性研究和比较研究非常有用,甚至还可以发现一些以前不知道的研究瑰宝。
事不宜迟,让我们赶快来试用一下!
网站将966个任务分为16个大类,分别是:
点开“计算机视觉”这个大类,又细分为几十个小类任务。
让我们以“语义分割”(Semantic Segmentation)这个任务为例。
语义分割这个任务是在pixel-level识别和理解图像中的内容
这个任务下一共有299篇公开代码的论文,9个leaderboards。
紧接着,可以按“Greatest”、“Latest”和“Without Code”对数据库中的论文进行排序:
上面是按“Greatest”排序的前5篇论文,可以看到,ECCV 2018 的Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation这篇论文是 PASCAL VOC 2012上语义分割任务的SOTA,CVPR 2017的Pyramid Scene Parsing Network是Cityscapes上实时语义分割任务的SOTA,何恺明的Mask R-CNN是MHP v1.0上多人语义分割任务排名第2的模型。
一目了然!简直太好用了!
再看几个例子。
NLP的Language Modelling任务最近很火,网站汇总了8个leaderboards,221篇公开代码的论文。
语言建模是预测文本中的下一个单词或下一个字符的任务。
我们看到,排行榜上Transformer-XL霸榜了。
更多好用功能,欢迎读者前去挖掘!
再次送上传送门or点击原文链接:
https://paperswithcode.com/sota