专栏首页深度学习自然语言处理经验分享 | 我是如何从小白到收获几个不错的offer!

经验分享 | 我是如何从小白到收获几个不错的offer!

来自 小小挖掘机

作者 石晓文

研究生三年,作为一名非计算机专业的学生,能够从一名纯小白(Python不会,机器学习没听说过)到最后校招拿到几个不错的offer,个人感觉可以给自己打个及格分吧。写本文的目的,一是对自己研究生阶段所学习的知识做一个总结,二是希望对那些刚接触机器学习,准备往这个方向发展的同学们提供一些可借鉴的经验。

1、入门Python,掌握数据分析常用工具

第一次接触Python是在2016年4月,本科阶段的工作差不多完成,就开始联系研究生阶段的导师,希望能够跟他做一些项目。他给我安排的第一个工作便是使用Python爬取空气质量数据,并告诉我可以使用scrapy这个库。我与Python的邂逅,便从这个爬虫开始了。

由于上来就写的是爬虫,所以关于Python的基础我也没有系统的学习,不过还是推荐给大家廖雪峰老师的免费教程:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000

如果想要深入了解一些Python的知识,推荐大家学习《流畅的Python》一书,封面如下。这本书我看了前面的九章,讲的十分不错,加深了自己对于Python里面内存管理、常用函数、类等的认识。

除了Python的基础知识,想要往数据分析、机器学习方向发展的话,还需要掌握一些常用的库,包括Pandas、Numpy、Matplotlib、Sklearn等等。

关于前三个,推荐的书是《利用Python进行数据分析》:

关于Sklearn的使用,包括调用常见的机器学习算法、使用网格搜索寻找最优的参数,可以参考的一本书是《Python机器学习及实践 从零开始通往Kaggle竞赛之路》

如果上面的书你都看完了,我觉得算是入门Python数据分析了。

2、初识机器学习,反复读反复看

第一次听说机器学习这个名词,大概是在2016年8月份,是我现在的舍友向我提到的,当时并没有太在意,直到研究生阶段开始,才慢慢有所接触。当时身边的人的普遍反应是,这家伙大家都在学,特别能挣钱。也许当时自己也是想着能多挣钱,才会开始入门机器学习的吧。不过现在,已经开始慢慢把机器学习当做一种兴趣,一种爱好去看待了。

想必大家都知道,入门机器学习,不得不看的三本书是吴军老师的《数学之美》、李航博士的《统计学习方法》和周志华老师的《机器学习》,也就是所谓的西瓜书。

但是有时候,有些算法比如SVM,说实话两本书讲的都不是最好的,还是得结合网上比较流行的帖子进行学习,整理了几个我看过的一些比较好的帖子,分享给大家:

SVM:http://blog.pluskid.org/?page_id=683 Word2Vec:https://blog.csdn.net/itplus/article/details/37969519 EM算法:https://blog.csdn.net/randy_01/article/details/88407432

其他的算法,大家结合两本书进行学习就可以了。值得一提的是,Xgboost和LightGBM是在面试阶段比较常考的两个机器学习方法,但是在上面的几本书中都没有涉及,我之前整理了一个简单的帖子,希望对大家有所帮助(最后的参考资料里面会有)。

除了书籍资料外,视频资料推荐的主要是吴恩达老师和李宏毅老师的机器学习入门课,地址如下:

吴恩达机器学习:https://www.bilibili.com/video/av50747658?from=search&seid=9310704140991725193 李宏毅机器学习:https://www.bilibili.com/video/av35932863?from=search&seid=16150707490146939986

如果你是刚入门机器学习的话,我的建议就是反复看,反复读,直到你能不依靠书本将模型的原理解释清楚为止。

3、面试不断碰壁,Leetcode得刷,得多刷

理想很丰满,现实很残酷,在自己刚学了点机器学习知识的时候,就出去面试闯荡,结果却是不断的碰壁,机器学习理论和经验少是一方面,数据结构题也是一问三不知,能想到的,只有时间或者空间复杂度最差的那种解法。所以我说啊,Leetcode不仅得刷,还得多刷。

不过咱也没必要着急,你得有一个计划,比如每天做三道五道,日积月累才行。尽管我现在在面试的过程中还是有一些问题写不出来,但大部分情况下,还是能够得到一个比较优的解。

关于刷leetcode这事,你可以往两个方向上走。一是按照从easy到medium到hard的方向。二是按照分类走,比如先刷树相关的,再刷数组相关的,依次类推。我自己是用的第一种方式啦,不过从校招面试的经验看,面试官关注的题主要集中在数组、链表、二叉树和动态规划上面,可以先把这几部分的弄明白。

在语言选择上,建议还是不要用Python吧,Python的小trick还是有点多的,就比如字符串表达式的值,我们用eval函数就可以得到,但是在真正面试的时候,这样是绝对不行的,所以建议还是Java或者C++吧。毕竟这两门语言,你总要掌握一门的。

除了在Leetcode上面刷题外,有两本书可以给大家参考,一是《剑指offer》,二是《程序员代码面试指南:IT名企算法与数据结构题目最优解》,封面如下:

4、相遇深度学习,论文积累是关键

关于深度学习,也是研一下才开始慢慢学习的,当时主要接触的是CNN、LSTM这些个算法,对于一些比较深入的如GAN、Seq2Seq、Transformer之类的,还没有接触。真正带我相遇深度学习的,可以说是李宏毅老师的深度学习课:https://www.bilibili.com/video/av9770302?from=search&seid=6099263941108862254

当然,吴恩达老师的课也十分精彩:https://mooc.study.163.com/university/deeplearning_ai#/c

除此之外,不得不提的一本书是我们所谓的深度学习圣经,不过说实话,我觉得这本书虽然写得好,但还是有一定阅读难度的:

个人感觉,深度学习这东西,重在不断积累和反思吧,多读论文,多写代码。论文的话大家平常可以多关注PaperWeekly这个公众号,代码的话我建议如果论文给出了参考代码,大家可以尝试着去敲一敲,不仅加深自己对于论文思路的认识,还可以提升自己的动手实践能力。

5、推荐与计算广告,广度优先VS深度优先

在整个研究生阶段,我其实并没有形成一个主要的研究方向,大家可能看我平时的公众号推荐系统相关的东西比较多,但我并不是研究这个的,主要还是自己对这个东西比较感兴趣,所以看的多了些。推荐系统的两本入门书籍是《推荐系统实践》和《推荐系统与深度学习》:

深度学习领域还是挺多的,如推荐系统和计算广告、CV、NLP等等,这就引出了广度优先VS深度优先的问题。个人感觉还是深度优先为主吧,确定好自己的一个研究方向,然后在这个领域进行深挖。不过同时,也要兼顾广度,深度学习的东西都是相通的,比如Transformer最开始主要应用于文本领域,GAN主要应用于图像领域,这两种方法现在也都开始在推荐系统中使用。

最近自己要开始研究计算广告方面的知识了,因为自己入职之后可能从事这一方面的工作,那还是给大家推荐两本书吧,一本是大家所熟知的《计算广告》,另一本是黄皮书《互联网广告的市场设计》,想要入门这个方向的同学,建议先看黄皮书,再看《计算广告》一书。

6、Hive和Spark,数据处理的标配

Hive和Spark大家还是要学一下的,使用Hive来存储数据,使用spark sql和Hive sql来处理数据,感觉是互联网里面的主流方式。关于hive,掌握一些常用的函数的使用方法,如concat_ws,row_number,case..when,if,get_json_object等等,对于spark sql,掌握其运行的基本原理,以及一些常见问题的处理方法。首先,学会如何处理数据倾斜,有时候因为一个数据倾斜问题,一整天都浪费在调试一个spark代码中了,其次,学习如何尽量减少spark任务的空间占用,同时加速spark任务运行速度,spark作业在线上调用时,会占用公共资源,你的任务占用的资源越多,别人占用的资源就越少,同时,如果你的任务运行的快,也可以给别人的任务更多的空间。spark可以通过很多语言来实现,不过我建议还是学习一下scala吧,毕竟可以和java无缝衔接。除了spark和hive,掌握一定的excel知识也是必要的。

那么这里有两本书推荐给大家,《Hive编程指南》和《Spark内核机制解析及性能调优》:

本文分享自微信公众号 - 深度学习自然语言处理(zenRRan)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-05-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 6大技巧,让Python编程健步如飞!

    有人跟我抱怨说python太慢了,然后我就将python健步如飞的六大技巧传授给他,结果让他惊呆了,你也想知道这个秘诀吗?这就告诉你:

    一墨编程学习
  • 使用Python进行面部合成,合成结果请忽略!

    return_landmarkInt是否检测并返回人脸关键点。合法值为:2 检测。返回 106 个人脸关键点。1检测。返回 83 个人脸关键点。0不检测注:本参...

    一墨编程学习
  • 为什么那么多自学Python的后来都放弃了,总结起来就这些原因

    目前信息化产业发展势头很好,IT就成为了很多普通人想要涉及的行业,因为相比于传统行业,IT行业涨薪幅度大,机会也多,所以就会大批的人想要转行来学习Python开...

    一墨编程学习
  • 谷歌算法工程师力荐,这本书用大量案例教你学会Python编程,必看

    因为智能技术,因为大数据,因为它的简便,所以越来越多的人学习Python,然而,也在学习中四处碰壁。

    Python编程大咖
  • 五大人工智能流行编程语言对比,只要学会一种绝对不亏!

    就像大多数软件应用程序的开发一样,开发人员也在使用多种语言来编写人工智能项目,但是现在还没有任何一种完美的编程语言是可以完全速配人工智能项目的。

    一墨编程学习
  • Latex

    LaTeX 是一种标记语言(或者,如 官方网站 所述,“用于高质量排版的文档准备系统”) 用于创建精彩的论文和演示文稿。你在职业生涯中阅读的几乎所有论文都是使用...

    iOSDevLog
  • Python关键点笔记之使用 pyenv 管理多个 Python 版本依赖环境

    从接触Python以来,一直都是采用virtualenv和virtualenvwrapper来管理不同项目的依赖环境,通过workon、mkvirtualenv...

    Jetpropelledsnake21
  • 女神把微信消息撤回后好慌,Python几十行代码轻松查看撤回消息!

    曾几何时Python对我说:"时日已不多,速度学Python"。于是乎上天让我看到了一个基于python的微信开源库:itchat,玩的不亦乐乎,接着我做了一个...

    一墨编程学习
  • Python数据分析师养成记

    从这周开始,罗罗攀开始更新新系列《Python数据分析师养成记》。该系列将以小白的视角出发,一步步的进阶Python数据分析。

    罗罗攀
  • 10年程序员论:学习Python最正确的步骤(0基础必备)

    首先,学习Python编程技术,自学或者参加培训学习都适用,每个人都有自己的学习方式和方法。

    一墨编程学习

扫码关注云+社区

领取腾讯云代金券