Dijkstra算法

Dijkstra算法使用了广度优先搜索解决赋权有向图(或无向图)的单源最短路径问题。

输入

该算法的输入包含了一个有权重的图,以及中的一个起点,是途中所有顶点的集合,是图中所有顶点的集合。图中的边是两个顶点所形成的元素对,表示顶点到顶点的边,表示这条边的权重。

输出

该算法能够在一个图中,找到从起点到任何其他顶点的最低权重路径(最短路径)。

流程

这个算法是通过为每个顶点保留当前为止所找到的从到的最短路径来工作的。初始时,起点的路径权重被赋为 0 (d[s]=0)。若对于顶点 m 存在能直接到达的边,则把d[m]设为,同时把所有其他(不能直接到达的)顶点的路径长度设为无穷大。当算法结束时,d[v]中存储的便是从到的最短路径,如果路径不存在的话是无穷大。

边的拓展:如果存在一条从到的边,那么从到的最短路径可以通过将边添加到从到的路径尾部来拓展一条从到的路径。这条路径的长度是 d[u] + w(u,v)。如果这个值比当前已知的d[v]的值要小,则可以用新值来替代当前d[v]中的值。拓展边的操作一直运行到所有的 d[v] 都代表从到的最短路径的长度值。此算法的组织令达到其最终值时,每条边都只被拓展一次。

算法维护两个顶点集合S和Q。集合S保留所有已知最小d[v]值的顶点v,而集合Q则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从Q移动到S。这个被选择的顶点是Q中拥有最小的d[u]值的顶点。当一个顶点u从Q中转移到了S中,算法对u的每条外接边(u, v)进行拓展。

伪代码

functionDijkstra(G, w, s)

foreach vertex v in V[G] // 初始化

d[v] := infinity // 将各点的已知最短距离先设成无穷大

previous[v] := undefined // 各点的已知最短路径上的前趋都未知

d[s] := 0 // s到s的最小距离设为0

S := emptyset

Q := set ofall vertices

while Q isnot an empty set

u := Extract_Min(Q)

S.append(u)

foreach edge outgoing from u as (u,v)

if d[v] > d[u] + w(u,v) // 拓展边(u,v)

d[v] := d[u] + w(u,v) //更新路径长度到更小的那个和值

previous[v] := u // 纪录前趋顶点

为了记录最佳路径的轨迹,我们只需记录该路径上每个点的前趋,即可通过迭代来回溯出到的最短路径:

S := emptysequence

u := t

while definedu

insert u to the beginning of S

u := previous[u] //previous数组即为上文中的p

原文发布于微信公众号 - mwangblog(mwangblog)

原文发表时间:2019-05-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券