前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LFM--梯度下降法--实现基于模型的协同过滤

LFM--梯度下降法--实现基于模型的协同过滤

作者头像
黑泽君
发布2019-05-19 16:33:08
8460
发布2019-05-19 16:33:08
举报
文章被收录于专栏:黑泽君的专栏黑泽君的专栏

LFM--梯度下降法--实现基于模型的协同过滤

0.引入依赖

代码语言:javascript
复制
import numpy as np # 数值计算、矩阵运算、向量运算
import pandas as pd # 数值分析、科学计算

1.数据准备

代码语言:javascript
复制
# 定义评分矩阵 R
R = np.array([[4, 0, 2, 0, 1],
              [0, 2, 3, 0, 0],
              [1, 0, 2, 4, 0],
              [5, 0, 0, 3, 1],
              [0, 0, 1, 5, 1],
              [0, 3, 2, 4, 1],
             ])
# R.shape # (6, 5)
# R.shape[0] # 6
# R.shape[1] # 5
# len(R) # 6
# len(R[0]) # 5

2.算法的实现

代码语言:javascript
复制
"""
@输入参数:
R:M*N 的评分矩阵
K:隐特征向量维度
max_iter: 最大迭代次数
alpha:步长
lamda:正则化系数

@输出:
分解之后的 P,Q
P:初始化用户特征矩阵 M*K
Q:初始化物品特征矩阵 N*K,Q 的转置是 K*N
"""

# 给定超参数
K = 5
max_iter = 5000
alpha = 0.0002
lamda = 0.004

# 核心算法
def LMF_grad_desc(R, K=2, max_iter=1000, alpha=0.0001, lamda=0.002):
    # 定义基本维度参数
    M = len(R)
    N = len(R[0])

    # P、Q 的初始值随机生成
    P = np.random.rand(M, K)
    Q = np.random.rand(N, K)
    Q = Q.T

    # 开始迭代
    for steps in range(max_iter):
        # 对所有的用户 u,物品 i 做遍历,然后对对应的特征向量 Pu、Qi 做梯度下降
        for u in range(M):
            for i in range(N):
                # 对于每一个大于 0 的评分,求出预测评分误差 e_ui
                if R[u][i] > 0:
                    e_ui = np.dot(P[u,:], Q[:,i]) - R[u][i]
                    # 代入公式,按照梯度下降算法更新当前的 Pu、Qi
                    for k in range(K):
                        P[u][k] = P[u][k] - alpha * (2 * e_ui * Q[k][i] + 2 * lamda * P[u][k])
                        Q[k][i] = Q[k][i] - alpha * (2 * e_ui * P[u][k] + 2 * lamda * Q[k][i])

        # u,i 遍历完成,所有的特征向量更新完成,可以得到 P、Q,可以计算预测评分矩阵
        predR = np.dot(P, Q)

        # 计算当前损失函数(所有的预测误差平方后求和)
        cost = 0
        for u in range(M):
            for i in range(N):
                # 对于每一个大于 0 的评分,求出预测评分误差后,将所有的预测误差平方后求和
                if R[u][i] > 0:
                    cost += (np.dot(P[u,:], Q[:,i]) - R[u][i]) ** 2
                    # 加上正则化项
                    for k in range(K):
                        cost += lamda * (P[u][k] ** 2 + Q[k][i] ** 2)
        if cost < 0.0001:
            # 当前损失函数小于给定的值,退出迭代
            break

    return P, Q.T, cost

3.测试

代码语言:javascript
复制
P, Q, cost = LMF_grad_desc(R, K, max_iter, alpha, lamda)

print(P)
print(Q)
print(cost)

predR = P.dot(Q.T)

print(R)
predR

当 K = 2 时,输出结果如下:

代码语言:javascript
复制
[[1.44372596 1.29573962]
 [1.82185633 0.0158696 ]
 [1.5331521  0.16327061]
 [0.31364667 1.9008297 ]
 [1.03622742 2.03603634]
 [1.34107967 0.93406796]]
[[ 0.4501051   2.55477489]
 [ 1.18869845  1.20910294]
 [ 1.54255106 -0.23514326]
 [ 2.33556583  1.21026575]
 [ 0.43753164  0.34555928]]
1.0432768290554293
[[4 0 2 0 1]
 [0 2 3 0 0]
 [1 0 2 4 0]
 [5 0 0 3 1]
 [0 0 1 5 1]
 [0 3 2 4 1]]

array([[3.96015147, 3.2828374 , 1.92233657, 4.9401063 , 1.07943065],
       [0.86057008, 2.18482578, 2.80657478, 4.27427181, 0.80260368],
       [1.10719924, 2.0198665 , 2.32657341, 3.77837848, 0.72722223],
       [4.99736596, 2.6711301 , 0.03684871, 3.03305153, 0.79407969],
       [5.66802576, 3.69353946, 1.11967348, 4.8843224 , 1.15695354],
       [2.98996017, 2.72352365, 1.84904408, 4.2626503 , 0.90954065]])

当 K = 5 时,输出结果如下:

代码语言:javascript
复制
[[ 0.77991893  0.95803701  0.75945903  0.74581653  0.58070622]
 [ 1.51777367  0.66949331  0.89818609  0.23566984  0.56583223]
 [ 0.03567022  0.58391558  1.42477223  0.87262652 -0.52553017]
 [ 1.24101793  0.86257736  0.73772417  0.18181617  0.97014545]
 [ 0.58789616  0.53522492  0.48830352  1.80622908  0.81202167]
 [ 1.08640318  0.87660384  0.68935314  0.84506882  0.92284071]]
[[ 1.64469428  1.10535565  0.56686066  0.38656745  1.56519511]
 [ 0.61680687  0.57188343  0.49729111  0.9623455   0.43969708]
 [ 0.99260822  0.6007452   1.14768173 -0.16998497 -0.14094479]
 [ 0.47070988  0.85347655  1.43546859  1.8185161   0.29759968]
 [ 0.07923314  0.49412497  0.53285806  0.23753882 -0.05146021]]
0.7478305665280703
[[4 0 2 0 1]
 [0 2 3 0 0]
 [1 0 2 4 0]
 [5 0 0 3 1]
 [0 0 1 5 1]
 [0 3 2 4 1]]

array([[3.9694342 , 2.37968507, 2.01268221, 3.8040546 , 1.08714641],
       [4.72218838, 2.2412959 , 2.81976984, 3.17210672, 0.95653992],
       [1.02652007, 1.67315396, 1.94711343, 3.99085212, 1.28488146],
       [5.0014878 , 2.22716585, 2.42906339, 2.99867943, 0.91091753],
       [3.80452512, 3.00679363, 1.04401937, 4.96078887, 0.95850804],
       [4.91762916, 2.73324389, 2.1224277 , 4.06049468, 1.03980543]])
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-05-18 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0.引入依赖
  • 1.数据准备
  • 2.算法的实现
  • 3.测试
相关产品与服务
腾讯云服务器利旧
云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档