前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >3个最常用的分类模型评估指标!

3个最常用的分类模型评估指标!

作者头像
1480
发布2019-05-22 22:58:32
2.8K0
发布2019-05-22 22:58:32
举报
文章被收录于专栏:数据分析1480

针对二元分类结果,常用的评估指标有如下三个:查准率(Precision)、查全率(Recall)以及F-score。这篇文章将讨论这些指标的含义、设计初衷以及局限性。

01 二元分类问题

在机器学习领域,我们常常会碰到二元分类问题。这是因为在现实中,我们常常面对一些二元选择,比如在休息时,决定是否一把吃鸡游戏。不仅如此,很多事情的结果也是二元的,比如表白时,是否被发好人卡。

当然,在实际中还存在一些结果是多元的情况,比如从红、黄、蓝三种颜色中,选择一个,而这些多元情况对应着机器学习里的多元分类问题。对于多元分类问题,在实际的处理过程中常将它们转换为多个二元分类问题解决,比如图1所示的例子。

图1

那么自然地,一个多元分类结果可以分解为多个二元分类结果来进行评估。这就是为什么我们只讨论二元分类结果的评估。为了更加严谨的表述,我们使用变量

来表示真实的结果,

表示预测的结果。其中

表示正面的结果(在实际应用中更加关心的类别),比如妹子接受表白,而

表示负面的结果,比如妹子拒绝表白。

02 查准率与查全率

在讨论查准查全的数学公式之前,我们先来探讨:针对二元分类问题,应该如何正确评估一份预测结果的效果。

沿用上面的数学记号。如图2所示,图中标记为1的方块表示

,但

的数据;标记为3的凹型方块表示

,但

的数据;标记为2的方块表示

,且

的数据。而且这些图形的面积与对应数据的数据量成正比,比如,

,且

的数据个数越多,标记2的面积越大。

很容易发现,图中标记为2的部分表示模型预测结果正确,而标记为1和3的部分则表示模型预测结果错误。

  • 对于一份预测结果,一方面希望它能做到“精确”:当时

,有很大概率,真实值

就等于1。这表现在图形上,就是标记2的面积很大,而标记3的面积很小。

  • 另一方面也希望它能做到“全面”:对于几乎所有的

,对应的预测值

也等于1。在图形上,这表示标记2的面积很大,而标记1的面积很小。

于是,对应地定义查准率(precision)和查全率(recall)这两个技术指标(有的文献里,将查准率翻译为精确率;将查全率翻译为召回率)来评估一份预测结果的效果。比较直观的定义如图2所示。

图2

为了更加严谨,下面将从数学的角度给出这两个指标的严格定义。首先将数据按预测值和真实值分为4类,具体见表1。

表1

于是可以得到公式(1):

公式(1)

经过进一步的推导,可以得到这两个技术指标的概率定义,如公式(2)。从概率上来讲:预测值等于1时,真实值等于1的概率为查准率;真实值等于1时,预测值等于1的概率为查全率。

理想的情况是这两个指标都很高,但现实往往是残酷的。这两个指标通常存在着此消彼长的现象。比如降低预测表白成功的标准(也就是增加

的数量),往往会提高它的查全率,但同时会降低它的查准率,反之依然。整个过程的直观图像如图3所示。

图3

03 F-score

既然这两个指标往往是成反比的,而且在很大程度上,受预测标准的控制。那么只拿其中的某一个指标去评估预测结果是不太合适的。比如在极端情况下,预测所有表白都成功,即。这时预测的查全率是100%,但查准率肯定很低,而且这样的预测显然是没太大价值的。

而两个指标同时使用,在实际应用时又不太方便。为了破解这个困局,在实践中,我们定义了新的指标去“综合”这两个指标。具体的定义如公式(3),从数学上来看,它其实是查准率与查全率的调和平均数。对于二元分类问题,

综合考虑了预测结果的查准率和查全率,是一个比较好的评估指标。

其实从模型的角度来看,查准率与查全率的“相互矛盾”给了我们更多的调整空间。应用场景不同,我们对查准率和查全率的要求是不一样的。在有的场景中,关注的焦点是查全率。

例如对于网上购物的衣服推荐,电商平台关心的是那些对衣服感兴趣的客户,希望模型对这些客户的预测都正确;而那些对衣服不感兴趣的客户,即使模型结果有较大偏差,也是可以接受的。也就是说,电商平台重视查全率,但不太关心查准率。这时就可以调低模型的预测标准,通过牺牲查准率来保证查全率。

但在有的场景中,查准率才是重点。例如在实时竞价(RTB)广告行业,有3种参与者:需要在互联网上对产品做广告的商家,比如Nike;广告投放中介(DSP);广告位提供者,比如新浪网。Nike将广告内容委托给广告投放中介A,A通过分析选定目标客户群。当目标客户访问新浪网时,A向新浪网购买广告位并将Nike广告推送给他。

如果该客户点击了Nike广告,Nike会向投放中介A支付相应费用。否则,全部费用由中介A承担。那么对于广告投放中介A,它希望投放的每条广告都会被点击,但不太关心是否每个对Nike感兴趣的客户都被推送了广告。换句话说,广告投放中介更关心查准率。于是可以通过调高模型的预测标准来提高查准率,当然这时会牺牲一部分查全率。

对于这些偏重某一特定指标的场景,可以如公式(4),相应地定义指标(其实是的一个特例)。当靠近0时,偏向查准率,而很大时,则偏向查全率,如图4所示。

图4

04 总结

查准率、查全率和F-score是最为常用的二元分类结果评估指标。其中查准率和查全率这两个指标都只侧重于预测结果的某一个方面,并不能较全面地评价分类结果。而F-score则是更加“上层”的评估指标,它建立在前面两个指标的基础上,综合地考虑了分类结果的精确性和全面性。

从上面的讨论可以看到,这三个指标针对的是某一份给定的分类结果。但对于大多数分类模型,它们往往能产生很多份分类结果,比如对于逻辑回归,调整预测阈值可以得到不同的分类结果。也就是说,这三个指标并不能“很全面”地评估模型本身的效果,需要引入新的评估指标。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-04-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据分析1480 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 01 二元分类问题
  • 02 查准率与查全率
  • 03 F-score
  • 04 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档