前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >海思uboot启动流程详细分析(二)

海思uboot启动流程详细分析(二)

作者头像
233333
发布2019-05-25 18:21:35
2.3K0
发布2019-05-25 18:21:35
举报

1. 第二个start.S

start_armboot开始,在startup.c中有包含#include <config.h>

在config.h中:

代码语言:javascript
复制
/* Automatically generated - do not edit */
#define CONFIG_BOARDDIR board/hisilicon/hi3559av100
#include <config_defaults.h>
#include <config_uncmd_spl.h>
#include <configs/hi3559av100.h>
#include <asm/config.h>
#include <config_fallbacks.h>

hi3559av100.h中:

代码语言:javascript
复制
#define CONFIG_SYS_TEXT_BASE            0x48800000

hi3559av100.h中,看到了CONFIG_SYS_TEXT_BASE的宏

代码语言:javascript
复制
/* CONFIG_SYS_TEXT_BASE needs to align with where ATF loads bl33.bin */
#define CONFIG_SYS_TEXT_BASE        0x48800000

查看u-boot.map在这里又来到了上一层的start.S中来,所以可以知道这两个是由两个文件组成的,一个是u-boot.bin和reg_info.bin,就是说两个不同的start.S的流程来合成一个最终的u-boot-hi3559av100.bin

这个便是正常的流程了:

本文将结合u-boot的“board—>machine—>arch—>cpu”框架,介绍u-boot中平台相关部分的启动流程。并通过对启动流程的简单分析,掌握u-boot移植的基本方法。

2. 多平台架构

这些问题的本质,是软件工程中的抽象和封装,以最简洁、最高效的方式,实现尽可能多的功能。u-boot作为一个跨平台、跨设备的bootloader,同样会面临这些问题。它的解决方案,就是“board—>machine—>arch—>cpu”框架,如下:

image
image

基于图片1的架构,u-boot和平台有关的初始化流程,显得比较直观、清晰:

1)u-boot启动后,会先执行CPU(如armv8)的初始化代码。 2)CPU相关的代码,会调用ARCH的公共代码(如arch/arm)。 3)ARCH的公共代码,在适当的时候,调用board有关的接口。u-boot的功能逻辑,大多是由common代码实现,部分和平台有关的部分,则由公共代码声明,由board代码实现。 4)board代码在需要的时候,会调用machine(arch/arm/mach-xxx)提供的接口,实现特定的功能。因此machine的定位是提供一些基础的代码支持,不会直接参与到u-boot的功能逻辑中。

3. 平台相关部分的启动流程分析

本文先不涉及u-boot和平台相关的Kconfig/Makefile部分,以ARM64为例,假定u-boot首先从“arch/arm/cpu/armv8/start.S”的_start接口开始执行。因此我们从_start开始分析。

3.1 _start

_start是u-boot启动后的第一个执行地址,对armv8来说,它只是简单的跳转到reset处执行,如下:

代码语言:javascript
复制
.globl  _start
_start:
    b   reset

3.2 reset

代码语言:javascript
复制
reset:
    /* Allow the board to save important registers */
    b   save_boot_params
.globl  save_boot_params_ret
save_boot_params_ret:

#ifdef CONFIG_SYS_RESET_SCTRL
    bl reset_sctrl
#endif
    /*
     * Could be EL3/EL2/EL1, Initial State:
     * Little Endian, MMU Disabled, i/dCache Disabled
     */
    adr x0, vectors
    switch_el x1, 3f, 2f, 1f
3:  msr vbar_el3, x0
    mrs x0, scr_el3
    orr x0, x0, #0xf            /* SCR_EL3.NS|IRQ|FIQ|EA */
    msr scr_el3, x0
    msr cptr_el3, xzr           /* Enable FP/SIMD */
#ifdef COUNTER_FREQUENCY
    ldr x0, =COUNTER_FREQUENCY
    msr cntfrq_el0, x0          /* Initialize CNTFRQ */
#endif
    b   0f
2:  msr vbar_el2, x0
    mov x0, #0x33ff
    msr cptr_el2, x0            /* Enable FP/SIMD */
    b   0f
1:  msr vbar_el1, x0
    mov x0, #3 << 20
    msr cpacr_el1, x0           /* Enable FP/SIMD */
0:

    /* Apply ARM core specific erratas */
    bl  apply_core_errata

    /*
     * Cache/BPB/TLB Invalidate
     * i-cache is invalidated before enabled in icache_enable()
     * tlb is invalidated before mmu is enabled in dcache_enable()
     * d-cache is invalidated before enabled in dcache_enable()
     */

    /* Processor specific initialization */
    bl  lowlevel_init

1)reset SCTRL寄存器

具体可参考reset_sctrl函数,由CONFIG_SYS_RESET_SCTRL控制,一般不需要打开。该配置项的解释如下:

Reset the SCTRL register at the very beginning of execution to avoid interference from stale mappings set up by early firmware/loaders/etc. http://lists.denx.de/pipermail/u-boot/2015-April/211147.html

2)根据当前的EL级别,配置中断向量、MMU、Endian、i/d Cache等。

3)配置ARM的勘误表

具体可参考apply_core_errata函数,由CONFIG_ARM_ERRATA_XXX控制,在项目的初期,可以不打开,后续根据实际情况打开)。

就是ARM有一些bug,但可以通过软件的方法绕过去,由u-boot的代码注释可知,应该只有Cortex-A57才有。具体什么bug,我也没有去研究

4)调用lowlevel_init的功能解释如下(具体可参考u-boot的readme文档):

  • purpose: essential init to permit execution to reach board_init_f()

- no global_data or BSS - there is no stack (ARMv7 may have one but it will soon be removed) - must not set up SDRAM or use console - must only do the bare minimum to allow execution to continue to board_init_f() - this is almost never needed - return normally from this function

海思的和原生uboot代码的start.S其实就是增加以下内容

5)如果是多CPU的场景,处理其它的CPU的boot

多CPU功能由CONFIG_ARMV8_MULTIENTRY控制,不需要打开。

6)跳转到arm公共的_main中执行

ARM64平台的_main位于crt0_64.S文件中,具体请参考下面的描述。

3.3 _main

crt0是C-runtime Startup Code的简称,意思就是运行C代码之前的准备工作。关于_main函数,crt0_64.S中有非常详细的注释(这一点要给u-boot点100个赞!),大家可以参考。该函数的定义如下:

代码语言:javascript
复制
ENTRY(_main)

/*
 * Set up initial C runtime environment and call board_init_f(0).
 */
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
    ldr x0, =(CONFIG_SPL_STACK)
#else
    ldr x0, =(CONFIG_SYS_INIT_SP_ADDR)
#endif
    bic sp, x0, #0xf/* 16-byte alignment for ABI compliance */
    mov x0, sp
    bl  board_init_f_alloc_reserve
    mov sp, x0
    /* set up gd here, outside any C code */
    mov x18, x0
    bl  board_init_f_init_reserve

    mov x0, #0
    bl  board_init_f

#if !defined(CONFIG_SPL_BUILD)
/*
 * Set up intermediate environment (new sp and gd) and call
 * relocate_code(addr_moni). Trick here is that we'll return
 * 'here' but relocated.
 */
    ldr x0, [x18, #GD_START_ADDR_SP]/* x0 <- gd-="">start_addr_sp */
    bic sp, x0, #0xf/* 16-byte alignment for ABI compliance */
    ldr x18, [x18, #GD_BD]      /* x18 <- gd-="">bd */
    sub x18, x18, #GD_SIZE      /* new GD is below bd */

    adr lr, relocation_return
    ldr x9, [x18, #GD_RELOC_OFF]    /* x9 <- gd-="">reloc_off */
    add lr, lr, x9/* new return address after relocation */
    ldr x0, [x18, #GD_RELOCADDR]    /* x0 <- gd-="">relocaddr */
    b   relocate_code

relocation_return:

/*
 * Set up final (full) environment
 */
    bl  c_runtime_cpu_setup /* still call old routine */

/* TODO: For SPL, call spl_relocate_stack_gd() to alloc stack relocation */

/*
 * Clear BSS section
 */
    ldr x0, =__bss_start    /* this is auto-relocated! */
    ldr x1, =__bss_end  /* this is auto-relocated! */
    mov x2, #0
clear_loop:
    str x2, [x0]
    add x0, x0, #8
    cmp x0, x1
    b.lo    clear_loop

    /* call board_init_r(gd_t *id, ulong dest_addr) */
    mov x0, x18         /* gd_t */
    ldr x1, [x18, #GD_RELOCADDR]    /* dest_addr */
    b   board_init_r        /* PC relative jump */

    /* NOTREACHED - board_init_r() does not return */

#endif /* !CONFIG_SPL_BUILD */

ENDPROC(_main)

功能可总结为(大部分翻译自crt0_64.S中的注释):

1)设置C代码的运行环境,为调用board_init_f接口做准备。包括:

代码语言:javascript
复制
a)设置堆栈(C代码的函数调用,堆栈是必须的)。如果当前的编译是SPL(由CONFIG_SPL_BUILD定义),可单独定义堆栈基址(CONFIG_SPL_STACK),否则,通过CONFIG_SYS_INIT_SP_ADDR定义堆栈基址。

b)调用board_init_f_alloc_reserve接口,从堆栈开始的地方,为u-boot中大名鼎鼎的GD ('global data') 数据结构,分配空间。

c)调用board_init_f_init_reserve接口,对GD进行初始化。

2)调用board_init_f函数,完成一些前期的初始化工作,例如:

代码语言:javascript
复制
a)点亮一个Debug用的LED灯,表示u-boot已经活了。

b)初始化DRAM、DDR等system范围的RAM等。

c)计算后续代码需要使用的一些参数,包括relocation destination、the future stack、the future GD location等。

注5:关于u-boot的relocation操作,后续会有专门的文章介绍。

3)如果当前是SPL(由CONFIG_SPL_BUILD控制),则_main函数结束,直接返回。如果是正常的u-boot,则继续执行后续的动作。

4)根据board_init_f指定的参数,执行u-boot的relocation操作。

5)清除BBS段。

6)调用board_init_r函数,执行后续的初始化操作(已经不再本文的讨论范围了,具体请参考后续的分析文章)。

4. 总结

4.1 SPL功能

SPL是Secondary Program Loader的简称,之所以称作secondary,是相对于ROM code来说的。SPL是u-boot中独立的一个代码分支,由CONFIG_SPL_BUILD配置项控制,是为了在正常的u-boot image之外,提供一个独立的、小size的SPL image,通常用于那些SRAM比较小(或者其它限制)、无法直接装载并运行整个u-boot的平台。

如果使用了SPL功能,u-boot的启动流程通常是:

代码语言:javascript
复制
ROM code加载SPL并运行;

SPL进行必要的初始化之后,加载u-boot并运行;

u-boot进行后续的操作。

因此,如果使用SPL功能,需要尽可能的减少SPL的代码量,以减小它的size。

4.2 配置项总结

经过第3章的流程分析,我们可以总结出和“平台相关部分的启动流程”有关的配置项,记录如下:

代码语言:javascript
复制
CONFIG_SYS_RESET_SCTRL,控制是否在启动的时候reset SCTRL寄存器,一般不需要打开;

CONFIG_ARM_ERRATA_XXX,控制ARM core的勘误信息,一般不需要打开;

CONFIG_GICV2、CONFIG_GICV3,控制GIC的版本,用到的时候再说明;

CONFIG_ARMV8_MULTIENTRY,控制是否在u-boot中使用多CPU,一般不需要;

CONFIG_SPL_BUILD,是否是能SPL的编译,需要的话可以打开;

CONFIG_SPL_STACK,如果配置了CONFIG_SPL_BUILD,是否为SPL image配置单独的stack(SP基址),如果需要,通过该配置项配置,如果不需要,则使用CONFIG_SYS_INIT_SP_ADDR;
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019-04-04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 第二个start.S
  • 2. 多平台架构
  • 3. 平台相关部分的启动流程分析
    • 3.1 _start
      • 3.2 reset
        • 3.3 _main
        • 4. 总结
          • 4.1 SPL功能
            • 4.2 配置项总结
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档