首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于OpenCL的图像积分图算法改进

基于OpenCL的图像积分图算法改进

作者头像
10km
发布2019-05-25 22:40:08
9330
发布2019-05-25 22:40:08
举报
文章被收录于专栏:10km的专栏10km的专栏

版权声明:本文为博主原创文章,转载请注明源地址。 https://cloud.tencent.com/developer/article/1433775

复杂的算法却未必低效,简单的算法往往要付出代价,这个代价可能很大。在opencl环境下编程,与我们在CPU上的传统编程思想有一些差异,这些差异看似微不足道,但往往是细节决定成功,就是这些看似微不足道的差异,在多核的GPU上被无限放大,导致同一种算法在GPU和CPU运行效果有着巨大的差别。

之前写过一篇文章《基于OpenCL的图像积分图算法实现》介绍了opencl中积分图算法的基本原理(不了解积分图概念的朋友可以先参考这篇文章),并基于这个基本原理提供了kernel实现代码.但经过这两个月的实践检验,原先这个基于前缀和计算加矩阵转置的算法被证明在GPU上是非常低效的。

为什么呢?从根本上来说,之前的算法不符合并行计算所要求的分治原则,每个kernel一次循环处理一整行数据,相着挺简单,真正执行的时候,并不快。

下图是原来的算法在CodeXL GPU performance counters的记录结果。一次积分图计算的总执行时间在1.6ms左右

注:为了提高效率这里的kernel代码基于前一篇文章的算法上有改进,将前经和计算和矩阵转置合并为一个名为prefix_sum_col_and_transpose的kernel,没有改进前的算法更慢数倍。

于是我参考了OpenCLIPP的积分图算法思路,重写了自己的代码,新的算法思路是这样的:

整个算法分为5个步骤(kernel)来完成。

第一步(integral_block)将整个图像分为4x4的小块,分别计算局部积分图。

第二步(intergral_scan_v),纵向扫描计算前一步每个4x4块最后一组数据的前缀和矩阵vert。

第三步(intergral_combine_v),结合前面两步的结果将纵向互不关联的4x4块在纵向上连接起来。

第四步(intergral_scan_h),横向扫描计算前一步每个4x4块最后一组数据的前缀和矩阵horiz。

第五步(intergral_combine_h),结合前面两步的结果将横向互不关联的4x4块在横向上连接起来,就形成了一幅完整的积分图。

这个算法思路与之前的算法相比,没有了耗时的矩阵转置过程,但分为5步,更复杂了,实际的执行效果呢?出乎我的意料:5个kernel加起来的总时间是0.63ms左右,相比原来的算法提高了近3倍。

下面是完整的kernel代码

 ///////////////////////////////////////////////////////////////////////////////
//! @file   : integral_gpu.cl
//! @date   : 2016/05/08
//! @author: guyadong
//! @brief  : Calculates the integral sum scan of an image
////////////////////////////////////////////////////////////////////////////////
#include "common_types.h"
#ifndef CL_DEVICE_LOCAL_MEM_SIZE
#error not defined CL_DEVICE_LOCAL_MEM_SIZE by complier with options -D
#endif
#ifndef SRC_TYPE 
#error not defined SRC_TYPE by complier with options -D
#endif
#ifndef DST_TYPE 
#error not defined DST_TYPE by complier with options -D
#endif
#ifndef INTEG_TYPE 
#error not defined INTEG_TYPE by complier with options -D
#endif
#define V_TYPE 4
#define SHIFT_NUM 2
#define LOCAL_BUFFER_SIZE (CL_DEVICE_LOCAL_MEM_SIZE/sizeof(DST_TYPE))

#define _KERNEL_NAME(s,d,t) prefix_sum_col_and_transpose_##s##_##d##_##t
#define KERNEL_NAME(s,d,t) _KERNEL_NAME(s,d,t)

#define _KERNEL_NAME_INTEGRAL_BLOCK(s,d,t) integral_block_##s##_##d##_##t
#define KERNEL_NAME_INTEGRAL_BLOCK(s,d,t) _KERNEL_NAME_INTEGRAL_BLOCK(s,d,t)

#define _KERNEL_NAME_SCAN_V(s) integral_scan_v_##s
#define KERNEL_NAME_SCAN_V(s) _KERNEL_NAME_SCAN_V(s)
#define _KERNEL_NAME_COMBINE_V(s) integral_combine_v_##s
#define KERNEL_NAME_COMBINE_V(s) _KERNEL_NAME_COMBINE_V(s)
#define _KERNEL_NAME_SCAN_H(s) integral_scan_h_##s
#define KERNEL_NAME_SCAN_H(s) _KERNEL_NAME_SCAN_H(s)
#define _KERNEL_NAME_COMBINE_H(s) integral_combine_h_##s
#define KERNEL_NAME_COMBINE_H(s) _KERNEL_NAME_COMBINE_H(s)
#define _kernel_name_scan_v KERNEL_NAME_SCAN_V(DST_TYPE)
#define _kernel_name_scan_h KERNEL_NAME_SCAN_H(DST_TYPE)
#define _kernel_name_combine_v KERNEL_NAME_COMBINE_V(DST_TYPE)
#define _kernel_name_combine_h KERNEL_NAME_COMBINE_H(DST_TYPE)


#define VECTOR_SRC VECTOR(SRC_TYPE,V_TYPE)
#define VECTOR_DST VECTOR(DST_TYPE,V_TYPE)

#define VLOAD FUN_NAME(vload,V_TYPE)

#if INTEG_TYPE == INTEG_SQUARE
#define compute_src(src) src*src
#define _kernel_name_ KERNEL_NAME(SRC_TYPE,DST_TYPE,integ_square)
#define _kernel_name_integral_block KERNEL_NAME_INTEGRAL_BLOCK(SRC_TYPE,DST_TYPE,integ_square)
#elif INTEG_TYPE == INTEG_COUNT
#define compute_src(src) ((DST_TYPE)0!=src?(DST_TYPE)(1):(DST_TYPE)(0))
#define _kernel_name_ KERNEL_NAME(SRC_TYPE,DST_TYPE,integ_count)
#define _kernel_name_integral_block KERNEL_NAME_INTEGRAL_BLOCK(SRC_TYPE,DST_TYPE,integ_count)
#elif INTEG_TYPE == INTEG_DEFAULT
#define compute_src(src) src
#define _kernel_name_ KERNEL_NAME(SRC_TYPE,DST_TYPE,integ_default)
#define _kernel_name_integral_block KERNEL_NAME_INTEGRAL_BLOCK(SRC_TYPE,DST_TYPE,integ_default)
#else
#error unknow INTEG_TYPE by complier with options -D
#endif

///////////////////////////////////////////////////////////////////////////////
//! @brief  :   Calculates the integral of an image
////////////////////////////////////////////////////////////////////////////////
#define __SWAP(a,b) swap=a,a=b,b=swap;
// 4x4矩阵转置
inline void transpose( VECTOR_DST m[V_TYPE] ){
    DST_TYPE swap;
    __SWAP(m[0].s1,m[1].s0);
    __SWAP(m[0].s2,m[2].s0);
    __SWAP(m[0].s3,m[3].s0);
    __SWAP(m[1].s2,m[2].s1);
    __SWAP(m[1].s3,m[3].s1);
    __SWAP(m[2].s3,m[3].s2);
}
// 计算4x4的局部积分图
__kernel void _kernel_name_integral_block( __global SRC_TYPE *sourceImage, __global VECTOR_DST * dest, __constant integ_param* param){ 
    int pos_x=get_global_id(0)*V_TYPE,pos_y=get_global_id(1)*V_TYPE;
    if(pos_x>=param->width||pos_y>=param->height)return;
    int count_x=min(V_TYPE,param->width -pos_x);
    int count_y=min(V_TYPE,param->height-pos_y);
    VECTOR_DST sum;
    VECTOR_DST matrix[V_TYPE];
    // 从原矩阵加载数据,并转为目标矩阵的数据向量类型(VECTOR_DST),
    //比如原矩阵是uchar,目标矩阵是float
    matrix[0]= 0<count_y ?
              count_x==V_TYPE?        VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+0)*param->src_width_step+pos_x))
            :(count_x==1?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+0)*param->src_width_step+param->width-V_TYPE)).w,0,0,0)
            :(count_x==2?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+0)*param->src_width_step+param->width-V_TYPE)).zw,0,0)
                        :(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+0)*param->src_width_step+param->width-V_TYPE)).yzw,0)
            )                       
            ):0;
    matrix[1]= 1<count_y ?
              count_x==V_TYPE?        VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+1)*param->src_width_step+pos_x))
            :(count_x==1?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+1)*param->src_width_step+param->width-V_TYPE)).w,0,0,0)
            :(count_x==2?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+1)*param->src_width_step+param->width-V_TYPE)).zw,0,0)
                        :(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+1)*param->src_width_step+param->width-V_TYPE)).yzw,0)
            )                       
            ):0;
    matrix[2]= 2<count_y ?
              count_x==V_TYPE?        VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+2)*param->src_width_step+pos_x))
            :(count_x==1?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+2)*param->src_width_step+param->width-V_TYPE)).w,0,0,0)
            :(count_x==2?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+2)*param->src_width_step+param->width-V_TYPE)).zw,0,0)
                        :(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+2)*param->src_width_step+param->width-V_TYPE)).yzw,0)
            )                       
            ):0;
    matrix[3]= 3<count_y ?
              count_x==V_TYPE?        VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+3)*param->src_width_step+pos_x))
            :(count_x==1?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+3)*param->src_width_step+param->width-V_TYPE)).w,0,0,0)
            :(count_x==2?(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+3)*param->src_width_step+param->width-V_TYPE)).zw,0,0)
                        :(VECTOR_DST)(VCONVERT(VECTOR_DST,)(VLOAD(0,sourceImage+(pos_y+3)*param->src_width_step+param->width-V_TYPE)).yzw,0)
            )                       
            ):0;
    sum=0;
    //4x4矩阵纵向前缀和计算
    sum+=compute_src(matrix[0]),matrix[0]=sum;
    sum+=compute_src(matrix[1]),matrix[1]=sum;
    sum+=compute_src(matrix[2]),matrix[2]=sum;
    sum+=compute_src(matrix[3]),matrix[3]=sum;
    // 转置矩阵
    transpose(matrix);
    sum=0;
    //4x4矩阵横向前缀和计算 
    sum+=matrix[0],matrix[0]=sum;
    sum+=matrix[1],matrix[1]=sum;
    sum+=matrix[2],matrix[2]=sum;
    sum+=matrix[3],matrix[3]=sum;
    // 第二次转置矩阵,将矩阵方向恢复正常
    transpose(matrix);  
    // 计算结果将数据写到目标矩阵
    if(0<count_y)dest[((pos_y+0)*param->dst_width_step+pos_x)/V_TYPE]=matrix[0];
    if(1<count_y)dest[((pos_y+1)*param->dst_width_step+pos_x)/V_TYPE]=matrix[1];
    if(2<count_y)dest[((pos_y+2)*param->dst_width_step+pos_x)/V_TYPE]=matrix[2];
    if(3<count_y)dest[((pos_y+3)*param->dst_width_step+pos_x)/V_TYPE]=matrix[3];
}
#undef __SWAP
// 将第一个kernel计算的结果(4x4分块的局部积分图)作为输入输入矩阵(dest)
// 计算每个4x4块纵向结尾数据的前缀和,存入vert
__kernel void _kernel_name_scan_v( __global DST_TYPE * dest, __constant integ_param* param,__global DST_TYPE *vert,int vert_step){ 
    int gid_y=get_global_id(0);
    if(gid_y>=param->height)return;
    DST_TYPE sum=0;
    int dst_width_step=param->dst_width_step;
    for(int x=V_TYPE-1,end_x=param->width;x<end_x;x+=V_TYPE){
        sum+=dest[gid_y*dst_width_step+x];
        vert[gid_y*vert_step+(x/V_TYPE)]=sum;
    }
}

// 将上第一个kernel计算的结果(4x4分块的局部积分图)作为输入输入矩阵(dest)
// 将上第二个kernel计算的分组前缀和作为输入输入矩阵(vert)
// 对dest每个4x4块数据加上vert对应的上一组增量,结果输出到dest_out
__kernel void _kernel_name_combine_v( __global VECTOR_DST * dest, __constant integ_param* param,__global DST_TYPE *vert,int vert_step,__global VECTOR_DST * dest_out){ 
    int gid_x=get_global_id(0),gid_y=get_global_id(1);
    if(gid_x*V_TYPE>=param->width||gid_y>=param->height)return;
    int dest_index=(gid_y*param->dst_width_step)/V_TYPE+gid_x;
    VECTOR_DST m  = dest[dest_index];   
    m += (VECTOR_DST)(gid_x>=1 ? vert[ gid_y*vert_step + gid_x-1]:0);
    dest_out [dest_index]=m;
}
// 将上一个kernel计算的结果(4x4分块的局部积分图)作为输入输入矩阵(dest)
// 计算每个4x4块横向结尾数据的前缀和,存入horiz
__kernel void _kernel_name_scan_h( __global VECTOR_DST * dest, __constant integ_param* param,__global VECTOR_DST *horiz,int horiz_step){ 
    int gid_x=get_global_id(0);
    if(gid_x*V_TYPE>=param->width)return;
    VECTOR_DST sum=0;
    int dst_width_step=param->dst_width_step;
    for(int y=V_TYPE-1,end_y=param->height;y<end_y;y+=V_TYPE){
        sum+=dest[y*dst_width_step/V_TYPE+gid_x];
        horiz[(y/V_TYPE)*horiz_step/V_TYPE+gid_x]=sum;
    }
}
// 将第三个kernel计算的结果作为输入输入矩阵(dest)
// 将第四个kernel计算的分组前缀和作为输入输入矩阵(vert)
// 对dest每个4x4块数据加上horiz对应的上一组增量,结果输出到dest_out
// dest_out就是最终的积分图
__kernel void _kernel_name_combine_h( __global VECTOR_DST * dest, __constant integ_param* param,__global VECTOR_DST *horiz,int horiz_step,__global VECTOR_DST * dest_out){ 
    int gid_x=get_global_id(0),gid_y=get_global_id(1);
    if(gid_x*V_TYPE>=param->width||gid_y>=param->height)return;
    VECTOR_DST m;
    int dest_index=(gid_y*param->dst_width_step)/V_TYPE+gid_x;
    m  = dest[dest_index];  
    m += gid_y>=V_TYPE?horiz[((gid_y/V_TYPE)-1)*horiz_step/V_TYPE + gid_x  ]:(DST_TYPE)0;
    dest_out[dest_index]=m; 
}

common_types.h

/*
 * common_types.h
 *
 *  Created on: 2016年4月14日
 *      Author: guyadong
 */

#ifndef FACEDETECT_CL_FILES_COMMON_TYPES_H_
#define FACEDETECT_CL_FILES_COMMON_TYPES_H_
#ifdef __OPENCL_VERSION__
typedef char    cl_char;
typedef uchar   cl_uchar;
typedef short   cl_short;
typedef ushort  cl_ushort;
typedef int     cl_int;
typedef uint    cl_uint;

typedef long    cl_long;
typedef ulong   cl_ulong;

typedef double  cl_double;
typedef float   cl_float;

typedef char2       cl_char2;
typedef char4       cl_char4;
typedef char8       cl_char8;
typedef char16      cl_char16;

typedef uchar2      cl_uchar2;
typedef uchar4      cl_uchar4;
typedef uchar8      cl_uchar8;
typedef uchar16     cl_uchar16;

typedef short2      cl_short2;
typedef short4      cl_short4;
typedef short8      cl_short8;
typedef short16     cl_short16;

typedef ushort2     cl_ushort2;
typedef ushort4     cl_ushort4;
typedef ushort8     cl_ushort8;
typedef ushort16    cl_ushort16;

typedef int2        cl_int2;
typedef int4        cl_int4;
typedef int8        cl_int8;
typedef int16       cl_int16;

typedef uint2       cl_uint2;
typedef uint4       cl_uint4;
typedef uint8       cl_uint8;
typedef uint16      cl_uint16;

typedef long2       cl_long2;
typedef long4       cl_long4;
typedef long8       cl_long8;
typedef long16      cl_long16;

typedef ulong2      cl_ulong2;
typedef ulong4      cl_ulong4;
typedef ulong8      cl_ulong8;
typedef ulong16     cl_ulong16;

typedef float2      cl_float2;
typedef float4      cl_float4;
typedef float8      cl_float8;
typedef float16     cl_float16;

typedef double2     cl_double2;
typedef double4     cl_double4;
typedef double8     cl_double8;
typedef double16    cl_double16;
#ifdef NDEBUG
#define DEBUG_LOG(format, ...) 
#else
#define DEBUG_LOG(format, ...) printf((__constant char*)format, __VA_ARGS__)
#endif
#define LOG(format, ...) printf((__constant char*)format, __VA_ARGS__)
#ifndef NULL
#define NULL 0
#endif

#define _VECTOR(t,n) t##n
#define VECTOR(t,n) _VECTOR(t,n)

#define _FUN_NAME(f,n) f##n
#define FUN_NAME(f,n) _FUN_NAME(f,n)
#define _FUN_NAME2(f,n,s) f##_##n##s
#define FUN_NAME2(f,n,s) _FUN_NAME2(f,n,s)

#define VCONVERT(vtype,suffix) FUN_NAME2(convert,vtype,suffix)
#define VCONVERT_SAT(vtype) VCONVERT(vtype,_sat)
#define VAS(vtype) FUN_NAME2(as,vtype,)
#define ALIGN_UP(v,a) ((v+(1<<a)-1)>>a<<a)
//denominator/numerator
#define CEIL_DIV(d,n) (((d)+(n)-1)/(n))

#endif

// define alignment macro for data struct crossed between host & device
#ifdef _MSC_VER
#define _CL_CROSS_ALIGN_(n) __declspec( align(n) )
#elif __GNUC__
#define _CL_CROSS_ALIGN_(n) __attribute__((aligned(n)))
#elif __cplusplus>=201103L
#define _CL_CROSS_ALIGN_(n) alignas(n)
#elif __OPENCL_VERSION__
#define _CL_CROSS_ALIGN_(n) __attribute__((aligned(n)))
#else
#warning  Need to implement some method to align data here
#define _CL_CROSS_ALIGN_(n)
#endif /*_MSC_VER*/

// define column num of each work-item working for integral kernel,
// is also equivalent to the number of local work-items so sad get_local_size(0)
#define INTEGRAL_COLUMN_STEP 16
#define IMGSCALE_LOCAL_SIZE 64
/* get divisor for len/num */
inline size_t gf_get_divisor(size_t len,size_t num){
    return (size_t)(len/num+(int)(len%num>0));
}
typedef struct _integ_param {
    cl_int width,height,src_width_step,dst_width_step;
}integ_param;
typedef struct _matrix_info_cl {
    cl_uint     width   ;
    cl_uint     height  ;
    cl_uint     row_stride;
/*
#ifdef __cplusplus
    _matrix_info_cl(size_t width,size_t height,size_t row_stride=0):width(cl_uint(width)), height(cl_uint(width)),row_stride( cl_uint(row_stride? row_stride:width)) {}
    _matrix_info_cl() = default;
    _matrix_info_cl(const _matrix_info_cl&) = default;
    _matrix_info_cl(_matrix_info_cl&&) = default;
    _matrix_info_cl& operator=(const _matrix_info_cl&) = default;
    _matrix_info_cl& operator=(_matrix_info_cl&&) = default;
#endif
*/
}matrix_info_cl;
// define integral matrix type
//  default intergal matrix
#define INTEG_DEFAULT   0
//  intergal matrix for suquare
#define INTEG_SQUARE    1
//  integral matrix for count of no zero
#define INTEG_COUNT     2
typedef enum _integral_type{
    integ_default=INTEG_DEFAULT
    ,integ_square=INTEG_SQUARE
    ,integ_count=INTEG_COUNT
}integral_type;

#endif /* FACEDETECT_CL_FILES_COMMON_TYPES_H_ */
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016年06月08日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档