tensorflow的基本用法——使用MNIST训练神经网络

本文主要是使用tensorflow和mnist数据集来训练神经网络。

#!/usr/bin/env python
# _*_ coding: utf-8 _*_

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 下载mnist数据
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)


# 定义神经网络模型的评估部分
def compute_accuracy(W, b):
    # 定义测试数据的placeholder
    x = tf.placeholder(tf.float32, [None, 784])
    # 定义测试数据的真实标签的placeholder
    y_ = tf.placeholder(tf.float32, [None, 10])
    # 定义预测值
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    # 判断预测值y和真实值y_中最大数的索引是否一致,y的值为1-10概率
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    # 计算准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    # 输入测试数据,执行准确率的计算并返回
    return sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

# 定义神经网络模型的训练部分
# 下面定义的神经网络只有一层W*x+b
# 定义输入数据placeholder,不定义输入样本的数目——None,但定义每个样本的大小为784
x = tf.placeholder(tf.float32, [None, 784])
# 定义神经网络层的权重参数
W = tf.Variable(tf.zeros([784, 10]))
# 定义神经网络层的偏置参数
b = tf.Variable(tf.zeros([10]))
# 定义一层神经网络运算,激活函数为softmax
y = tf.nn.softmax(tf.matmul(x, W) + b)
# 定义训练数据真实标签的placeholder
y_ = tf.placeholder(tf.float32, [None, 10])
# 定义损失函数,损失函数为交叉熵,reduction_indices表示沿着tensor的哪个纬度来求和
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# 定义神经网络的训练步骤,使用的是梯度下降法,学习率为0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# 初始化所有变量
init = tf.global_variables_initializer()
# 定义Session
sess = tf.Session()
# 执行变量的初始化
sess.run(init)
# 迭代进行训练
for i in range(1000):
    # 取出mnist数据集中的100个数据
    batch_xs, batch_ys = mnist.train.next_batch(100)
    # 执行训练过程并传入真实数据x, y_
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    if i % 100 == 0:
        print compute_accuracy(W, b) 

执行结果如下:

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
0.4075
0.8948
0.9031
0.9074
0.9037
0.9125
0.9158
0.912
0.9181
0.9169

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券