前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R+python︱Facebook大规模时序预测『真』神器——Prophet(遍地代码图)

R+python︱Facebook大规模时序预测『真』神器——Prophet(遍地代码图)

作者头像
悟乙己
发布2019-05-27 23:12:32
2.7K0
发布2019-05-27 23:12:32
举报

版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/57419862

经统专业看到预测的packages都是很眼馋的。除了之前的forecast包,现在这个prophet功能也很强大。本packages是由机器之心报道之后,抽空在周末试玩几小时。一些基本介绍可见机器之心的《业界 | Facebook开源大规模预测工具Prophet:支持Python和R》 并不喜欢理论分析,能直接上案例的,一般不码字,力求简单粗暴!!

官网网址:https://facebookincubator.github.io/prophet/ github网址:https://github.com/facebookincubator/prophet 论文:《Forecasting at Scale Sean J.Taylor and Benjamin Letham》 案例数据下载:http://download.csdn.net/detail/sinat_26917383/9764537

最后会补充一些facebook的理论。


那么试玩下来觉得比较赞的功能点:

  • 1、大规模、细粒度数据。其实并不是大量数据,而是时间粒度可以很小,在学校玩的计量大多都是“年/月”粒度,而这个包可以适应“日/时”级别的,具体的见后面的案例就知道了。不过,预测速度嘛~ 可以定义为:较慢!!!
  • 2、趋势预测+趋势分解,最亮眼模块哟~~ 拟合的有两种趋势:线性趋势、logistic趋势;趋势分解有很多种:Trend趋势、星期、年度、季节、节假日,同时也可以看到节中、节后效应。
  • 3、突变点识别+调整。多种对抗突变办法以及调节方式。
  • 4、异常值/离群值检测。时间维度的异常值检测。突变点和异常点既相似、又不同。
  • 5、处理缺失值数据。这里指的是你可能有一些时间片段数据的缺失,之前的做法是先插值,然后进行预测(一些模型不允许断点),这里可以兼顾缺失值,同时也达到预测的目的。可以处理缺失值数据,这点很棒。

prophet应该就是我一直在找的,目前看到最好的营销活动分析的预测工具,是网站分析、广告活动分析的福音,如果您看到本篇文章内的方法,您在使用中发现什么心得,还请您尽量分享出来~

 # install.packages('prophet')
library(prophet)
library(dplyr)

. .


一、趋势预测+趋势分解

1、案例一:线性趋势+趋势分解

  • 数据生成+建模阶段
history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
                      y = sin(1:366/200) + rnorm(366)/10)

m <- prophet(history,growth = "linear")

其中,生成数据的时候注意,最好用ds(时间项)、y(一定要numeric)这两个命名你的变量,本案例是单序列+时间项。数据长这样:

这里写图片描述
这里写图片描述

prophet是生成模型阶段,m中有很多参数,有待后来人慢慢研究。

  • 预测阶段
#时间函数
future <- make_future_dataframe(m, periods = 365)
tail(future)
#预测
forecast <- predict(m, future)
tail(forecast[c('ds', 'yhat', 'yhat_lower', 'yhat_upper')])
#直线预测
plot(m, forecast)
#趋势分解
prophet_plot_components(m, forecast)

make_future_dataframe:有趣的时间生成函数,之前的ds数据是2015-1-1到2016-1-1,现在生成了一个2015-1-1到2016-12-30序列,多增加了一年,以备预测。而且可以灵活的调控是预测天,还是周,freq参数。 predict,预测那么ds是时间,yhat是预测值,lower和upper是置信区间。 感受一下plot:

这里写图片描述
这里写图片描述

prophet_plot_components函数是趋势分解函数,将趋势分成了趋势项、星期、年份,这是默认配置。

这里写图片描述
这里写图片描述

.

2、案例二:logitics趋势+趋势分解

logitics是啥? 不懂烦请百度。

#数据生成阶段
history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
                      y = sin(1:366/200) + rnorm(366)/10,
                      cap=sin(1:366/200) + rnorm(366)/10+rep(0.3,366))
#最大增长趋势,cap设置cap,就是这个规模的顶点,y当时顶点

#模型生成
m <- prophet(history,growth = "logistic")
future <- make_future_dataframe(m, periods = 1826)
future$cap <- sin(1:2192/200) + rnorm(2192)/10+rep(0.3,2192)

#预测阶段
fcst <- predict(m, future)
plot(m, fcst)

prophet这里如果是要拟合logitics趋势,就需要一个cap变量,这个变量是y变量的上限(譬如最大市场规模),因为y如果服从logitics趋势不给范围的话,很容易一下预测就到顶点了,所以cap来让预测变得不那么“脆弱”… 下面来看一个失败拟合logitics案例:

这里写图片描述
这里写图片描述

. .


二、节假日效应

可以考察节中、节后效应。来看看paper中如何解释节日效应的(论文地址):

这里写图片描述
这里写图片描述

也就是说,节日效应能量函数h(t)由两部分组成,Z(t)是一个示性函数的集合(indicator function),而参数K服从(0,v)正态分布。可以说,将节日看成是一个正态分布,把活动期间当做波峰,lower_window 以及upper_window 的窗口作为扩散。

1、节中效应

#数据生成:常规数据
history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
                      y = sin(1:366/200) + rnorm(366)/10,
                      cap=sin(1:366/200) + rnorm(366)/10+rep(0.3,366))
#数据生成:节假日数据
library(dplyr)
playoffs <- data_frame(
  holiday = 'playoff',
  ds = as.Date(c('2008-01-13', '2009-01-03', '2010-01-16',
                 '2010-01-24', '2010-02-07', '2011-01-08',
                 '2013-01-12', '2014-01-12', '2014-01-19',
                 '2014-02-02', '2015-01-11', '2016-01-17',
                 '2016-01-24', '2016-02-07')),
  lower_window = 0,
  upper_window = 1
)
superbowls <- data_frame(
  holiday = 'superbowl',
  ds = as.Date(c('2010-02-07', '2014-02-02', '2016-02-07')),
  lower_window = 0,
  upper_window = 1
)
holidays <- bind_rows(playoffs, superbowls)

#预测
m <- prophet(history, holidays = holidays)
forecast <- predict(m, future)

#影响效应
forecast %>% 
  select(ds, playoff, superbowl) %>% 
  filter(abs(playoff + superbowl) > 0) %>%
  tail(10)

#趋势组件
prophet_plot_components(m, forecast);

数据生成环节有两个数据集要生成,一批数据是常规的数据(譬如流量),还有一个是节假日的时间数据 其中lower_window,upper_window 可以理解为假日延长时限,国庆和元旦肯定休息时间不一致,设置地很人性化,譬如圣诞节的平安夜+圣诞节两天,那么就要设置(lower_window = -1, upper_window = 1)。这个lower_window 的尺度为天,所以如果你的数据是星期/季度,需要设置-7/+7,比较合理。举一个python中的设置方式(时序是by week):

c3_4 = pd.DataFrame({
  'holiday': 'c1',
  'ds': pd.to_datetime(['2017/2/26',
'2017/3/5'),
  'lower_window': -7,
  'upper_window': 7,
})

lower_window,upper_window 是节日效应的精髓,一般情况下,在-7 / +7 的时间跟活动期的数值不一样,刚好可以很多表示出节日的正态效应。 数据长这样:

     holiday         ds lower_window upper_window
       <chr>     <date>        <dbl>        <dbl>
1    playoff 2008-01-13            0            1
2    playoff 2009-01-03            0            1
3    playoff 2010-01-16            0            1
4    playoff 2010-01-24            0            1
5    playoff 2010-02-07            0            1

预测阶段,记得要开启prophet(history, holidays = holidays)中的holidays。现在可以来看看节假日效应:

          ds      playoff superbowl
1 2015-01-11  0.012300004         0
2 2015-01-12 -0.008805914         0
3 2016-01-17  0.012300004         0
4 2016-01-18 -0.008805914         0
5 2016-01-24  0.012300004         0
6 2016-01-25 -0.008805914         0
7 2016-02-07  0.012300004         0
8 2016-02-08 -0.008805914         0

从数据来看,可以看到有一个日期是重叠的,超级碗+季后赛在同一天,那么这样就会出现节日效应累加的情况。 可以看到季后赛当日的影响比较明显,超级碗当日基本没啥影响,当然了,这些数据都是我瞎编的,要是有效应就见xxx。 趋势分解这里,除了趋势项、星期、年份,多了一个节假日影响,看到了吗?

这里写图片描述
这里写图片描述

.

2、调和节日效应(Prior scale for holidays and seasonality)

一些情况下节假日会发生过拟合,那么可以使用holidays.prior.scale参数来进行调节,使其平滑过渡。(不知道翻译地对不对,本来刚开始以为是节后效应…)

#节后效应 holidays.prior.scale
m <- prophet(history, holidays = holidays, holidays.prior.scale = 1)
forecast <- predict(m, future)
forecast %>% 
  select(ds, playoff, superbowl) %>% 
  filter(abs(playoff + superbowl) > 0) %>%
  tail(10)

主要通过holidays.prior.scale来实现,默认是10。由于笔者乱整数据,这里显示出效应,所以粘贴官网数据。官网的案例里面,通过调节,使得当晚超级碗的效应减弱,兼顾了节前的情况对当日的影响。 同时除了节前,还有季节前的效应,通过参数seasonality_prior_scale 调整

    DS  PLAYOFF SUPERBOWL
2190    2014-02-02  1.362312    0.693425
2191    2014-02-03  2.033471    0.542254
2532    2015-01-11  1.362312    0.000000
2533    2015-01-12  2.033471    0.000000
2901    2016-01-17  1.362312    0.000000
2902    2016-01-18  2.033471    0.000000
2908    2016-01-24  1.362312    0.000000

. .


三、突变点调节、间断点、异常点

本节之后主要就是玩案例里面的数据,案例数据如果R包中没有,可以从这里下载

.

1、Prophet——自动突变点识别

时间序列里面的很可能存在突变点,譬如一些节假日的冲击。Prophet会自动检测这些突变点,并进行适当的调整,但是机器判断会出现:没有对突变点进行调整、突变点过度调整两种情况,如果真的突变点出现,也可以通过函数中的参数进行调节。

Prophet自己会检测一些突变点,以下的图就是Prophet自己检测出来的,虚纵向代表突变点。检测到了25个,那么Prophet的做法跟L1正则一样,“假装”/删掉看不见这些突变。

这里写图片描述
这里写图片描述

其自己检验突变点的方式,类似观察ARIMA的自相关/偏相关系数截尾、拖尾:

这里写图片描述
这里写图片描述

.

2、人为干预突变点——弹性范围

通过changepoint_prior_scale进行人为干预。

df = pd.read_csv('../examples/example_wp_peyton_manning.csv')
m <- prophet(df, changepoint.prior.scale = 0.5)
forecast <- predict(m, future)
plot(m, forecast)

来感受一下changepoint.prior.scale=0.05和0.5的区别:

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

可以把changepoint.prior.scale看成一个弹性尺度,值越大,受异常值影响越大,那么波动越大,如0.5这样的。 .

3、人为干预突变点——某突变点

当你知道数据中,存在某一个确定的突变点,且知道时间。可以用changepoints 函数。不po图了。

df = pd.read_csv('../examples/example_wp_peyton_manning.csv')
m <- prophet(df, changepoints = c(as.Date('2014-01-01')))
forecast <- predict(m, future)
plot(m, forecast)

.

4、突变预测

标题取了这么一个名字,也是够吓人的,哈哈~ 第三节的前3点都是如何消除突变点并进行预测。 但是! 现实是,突变点是真实存在,且有些是有意义的,譬如双11、双12这样的节日。不能去掉这些突变点,但是不去掉又会影响真实预测,这时候Prophet新奇的来了一招:序列生成模型中,多少受异常值些影响(类似前面的changepoint_prior_scale,但是这里是从生成模型阶段就给一个弹性值)。 这里从生成模型中可以进行三个角度的调节: (1)调节趋势; (2)季节性调节

  • (1)趋势突变适应
df = pd.read_csv('../examples/example_wp_peyton_manning.csv')
m <- prophet(df, interval.width = 0.95)
forecast <- predict(m, future)

在prophet生成模型阶段,加入interval.width,就是代表生成模型时,整个序列趋势,还有5%受异常值影响。

  • (2)季节性突变适应

对于生产厂家来说,季节性波动是肯定有的,那么又想保留季节性突变情况,又要预测。而且季节性适应又是一个比较麻烦的事情,prophet里面需要先进行全贝叶斯抽样,mcmc.samples参数,默认为0.

m <- prophet(df, mcmc.samples = 500)
forecast <- predict(m, future)
prophet_plot_components(m, forecast);

打开mcmc.samples按钮,会把MAP估计改变为MCMC采样,训练时间很长,可能是之前的10倍。最终结果,官网DAO图:

这里写图片描述
这里写图片描述

.

5、异常值/离群值

异常值与突变点是有区别的,离群值对预测影响尤其大。

df <- read.csv('../examples/example_wp_R_outliers1.csv')
df$y <- log(df$y)
m <- prophet(df)
future <- make_future_dataframe(m, periods = 1096)
forecast <- predict(m, future)
plot(m, forecast);
这里写图片描述
这里写图片描述

对结果的影响很大,而且导致预测置信区间扩大多倍不止。prophet的优势体现出来了,prophet是可以接受空缺值NA的,所以这些异常点删掉或者NA掉,都是可以的。

#异常点变为NA+进行预测
outliers <- (as.Date(df$ds) > as.Date('2010-01-01')
             & as.Date(df$ds) < as.Date('2011-01-01'))
df$y[outliers] = NA
m <- prophet(df)
forecast <- predict(m, future)
plot(m, forecast);

当然啦,你也可以删掉整一段影响数据,特别是天灾人祸的影响是永久存在的,那么可以删掉这一整段。下图就是这样的情况,2015年6月份左右的一批数据,都是离群值。

这里写图片描述
这里写图片描述

. .


四、缺失值、空缺时间的处理+预测

前面第三章后面就提过,prophet是可以处理缺失值。那么这里就可以实现这么一个操作,如果你的数据不完整,且是间断的,譬如你有一个月20天的数据,那么你也可以根据prophet预测,同时给予你每天的数据结果。实现了以下的功能:

prophet=缺失值预测+插值
df <- read.csv('../examples/example_retail_sales.csv')
m <- prophet(df)
future <- make_future_dataframe(m, periods = 3652)
fcst <- predict(m, future)
plot(m, fcst);
这里写图片描述
这里写图片描述

源数据长这样:

            ds      y
1   1992-01-01 146376
2   1992-02-01 147079
3   1992-03-01 159336
4   1992-04-01 163669
5   1992-05-01 170068

也就是你只有一年的每个月的数据,上面是预测接下来每一天的数据,也能预测,但是后面每天预测的误差有点大。所以你可以设置make_future_dataframe中的freq,后面预测的是每个月的:

future <- make_future_dataframe(m, periods = 120, freq = 'm')
fcst <- predict(m, future)
plot(m, fcst)
这里写图片描述
这里写图片描述

.


五、用python实现prophet时序预测

1、安装

笔者在linux实践的时候,安装就遇到了很多问题。

pip install fbprophet

官网说:Make sure compilers (gcc, g++) and Python development tools (python-dev) are installed. If you are using a VM, be aware that you will need at least 2GB of memory to run PyStan. 还需要预先加载pystan这个包。 同时在调用的时候,from fbprophet import Prophet 报错,因为github最新版不是官方文档中的语句了。。。真是坑 应该是:from forecaster import Prophet

.

2、实践案例

模拟一个最简单的节日效应的案例:

from forecaster import Prophet
m = Prophet(holidays=holidays, holidays_prior_scale=20)
m.fit(df)
future = m.make_future_dataframe(periods = 1 ,freq = 'w' )
forecast = m.predict(future)
forecast

forecast中包含所有的信息,是一个dataframe表。包含:预测的y,趋势项、季节项、活动项等 其中freq 可以自己调节。其中plot_components是趋势分解。

m.plot_components(forecast)
这里写图片描述
这里写图片描述

延伸一:Facebook 的数据预测工具 Prophet ——贝叶斯推理

Facebook 的数据预测工具 Prophet 有何优势?用贝叶斯推理一探究竟

Prophet 在进行预测,其后端系统是一个概率程序语言 Stan,这代表 Prophet 能发挥出很多贝叶斯算法的优势,比如说:

使模型具有简单、易解释的周期性结构; 预测结果包括才完全后验分布中导出的置信区间,即Prophet提供的是一个数据驱动的风险估计。 在下面研究中,研究者让Prophet对两组数据进行预测,在后端使用概率程序语言,读者可以借此看到使用Stan的一些工作细节。

Prophet使用了一种通用时间序列模型,这种模型可适用于Facebook上的数据,并且具有分段走向(piecewise trends)、多周期及弹性假期(floating holiday)三种特性。

Prophet的把时间序列预测问题转变成了一个曲线拟合练习(exercise)。在这个曲线中,因变量是增长、周期和holiday的总体表现。

 - 增长(growth)

这一部分采用一个随时间变化的逻辑增长模型,属于非线性增长,所以,要用简单的分段常数函数来模拟线性增长。
用比率调整向量模拟分段点,每个分段点都对应一个具体的时间点。用拉普拉斯分布(Laplace distribution)模拟比率调整变量,位置参数(location parameter)设定为0。

 - Prophet 模型周期(periodic seasonality)

采用标准傅里叶级数。年、周的周期性(seasonality)近似值分别为20和6,周期性成分(seasonal component)在正常情况下是平滑状态。

 - 假期(Holiday)

用一个指标函数来模拟。
使用者可以调节扩散参数(spread parameter),以模拟未来会有多少历史季节性变化(historical seasonal variation)。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017年02月26日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、趋势预测+趋势分解
    • 1、案例一:线性趋势+趋势分解
      • 2、案例二:logitics趋势+趋势分解
      • 二、节假日效应
        • 1、节中效应
          • 2、调和节日效应(Prior scale for holidays and seasonality)
          • 三、突变点调节、间断点、异常点
            • 1、Prophet——自动突变点识别
              • 2、人为干预突变点——弹性范围
                • 3、人为干预突变点——某突变点
                  • 4、突变预测
                    • 5、异常值/离群值
                    • 四、缺失值、空缺时间的处理+预测
                    • 五、用python实现prophet时序预测
                      • 1、安装
                        • 2、实践案例
                          • 延伸一:Facebook 的数据预测工具 Prophet ——贝叶斯推理
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档