canvas高效绘制10万图形,你必须知道的高效绘制技巧

最近的一个客户项目中,简化的需求是绘制按照行列绘制很多个圆圈。需求看起来不难,上手就可以做,写两个for循环。

原始绘制方法

首先定义了很多Circle对象,在遍历循环中调用该对象的draw方法。代码如下:

for (var i = 0; i < column; i++) {
    for (var j = 0; j < row; j++) {
        var circle = new Circle({
            x: 8 * i + 3,
            y: 8 * j + 3,
            radius: 3
        })
        box.push(circle);
    }
}

console.time('time');
    for (var c = 0; c < box.length; c++) {
        var circle = box[c];
        circle.draw(ctx);
    }
    console.timeEnd('time');

结果绘制出了按照行列排布的很多个圆圈了,如下图所示:

恩,很简单嘛,可以回家睡觉了。 等等,客户要求绘制的极限是10万个,而且每次绘制不能卡顿。先看下绘制10万个圆圈的时间是多久,用console.time 统计绘制时间:

console.time('time');
// 实际绘制的代码
console.timeEnd('time');

时间显示为几百毫秒(3到4百毫秒),如下图所示:

几百毫秒的绘制时间,必然是卡顿的。想要流畅操作,肯定还的优化。

批量绘制

首先想到的是批量绘制,前面的代码中,每次变量都会调用circle.draw(ctx)方法,circle.draw方法代码如下:

draw: function (ctx) {
    ctx.save();
    ctx.lineWidth=this.lineWidth;
    ctx.strokeStyle=this.strokeStyle;
    ctx.fillStyle=this.fillStyle;
    ctx.beginPath();
    this.createPath(ctx);
    ctx.stroke();
    if(this.isFill){ctx.fill();}
    ctx.restore();
},

可以看出 每次遍历都调用了一次beginPath和stroke方法。为了提高绘制效率,我们可以只调用beginPath和stroke方法一次,把所有的子路径组织成为一个大的路径,这就是所谓的批量绘制思路,代码如下:

    console.time('time');
    ctx.beginPath();
    for (var c = 0; c < box.length; c++) {
        var circle = box[c];
        ctx.moveTo(circle.x + 3, circle.y);
        circle.createPath(ctx);
    }
    ctx.closePath();
    ctx.stroke();
    console.timeEnd('time');

调试发现,确实效率有了很大的提升,时间减少到100毫秒左右,相当于效率提高了3-4倍左右,如下图所示:

需要注意的是上述代码中的moveTo语句:

ctx.moveTo(circle.x + 3, circle.y);

这是因为: 当使用arc方法给路径中添加子路径的时候,arc所定义的路径会自动和路径集合中的最后一个路径连接起来,如下图所示:

此处的moveTo就是为了避免这种连接。

注意:arc 和arcTo都会有上述问题,但是rect定义的路径却不存在这种问题。

Pattern 方式

通过以上优化,客户已经觉得效率挺不错了。 但是技术研究没有止境,由于这个分布很规律,总感觉有更加快速的方法。最终突发灵感想到了一种方法,就是使用canvas 的Pattern功能: canvas的fillStyle可以指定为一个pattern对象,而pattern可以实现一个简单图像的平铺。基于这种思路,我们可以实现如下代码:

var tempCanvas = document.createElement('canvas');

var ctx2 = tempCanvas.getContext('2d');
var w = 5,h = 5;
tempCanvas.width = w;
tempCanvas.height = h;
dpr(tempCanvas);
ctx2.fillStyle = 'red';
ctx2.arc(w/2,h/2,w/2 - 1,0,Math.PI * 2);
ctx2.stroke();                  

ctx.save();
ctx.beginPath();
var width = tempCanvas.width * 500,height = tempCanvas.height * 200;
var pattern = ctx.createPattern(tempCanvas, 'repeat');
ctx.clearRect(100,100,width,height);
ctx.rect(100,100,width,height);
ctx.fillStyle = pattern;
ctx.fill();
ctx.restore();

代码首先定义一个小的canvas,命名为tempCanvas,在tempCanvas上面绘制一个圆,需要注意的是tempCanvas的尺寸要设置为正好绘制下这个圆圈。

然后通过通过tempCanvas创建pattern对象,并把canvas的绘制上下文ctx的fillStyle指定为该pattern对象。 之后通过rect方法指定要fill的区域大小,改区域大小应该是所有最终要绘制的圆圈的大小的总和:var width = tempCanvas.width 500,height = tempCanvas.height 200; 最后调用画笔的fill方法,用tempCanvas填充区域。最终绘制的效果和绘制消耗的时间如下图所示:

通过上图可以看出,效率极高,可以达到零点几毫秒的级别。

新的需求

如果客户需求只是这么简单,相信使用canvas pattern对象这种方式,效率是最高的。但是,客户的实际需求是,先绘制10万个的圆圈,然后可以用擦除工具,擦除一些区域的圆圈,如下图所示:

原始绘制方法和批量绘制方法要是实现上述效果,都很容易,只要把不需要绘制圆圈的位置,直接忽略掉即可以。

比如用一个map记录需要忽略的圆圈的坐标,遍历的时候判断在map记录中的地方就直接跳过不进行绘制操作。

canvas pattern + 裁剪

如果是canvas pattern的方式,应该怎么实现上图的效果呢? 经过思索发现可以通过ctx.clip方法。

clip,裁剪。如果通过ctx.clip定义了裁剪区域,绘制的图形只会在裁剪区域的部分显示出来,裁剪区域之外的,则不会显示。

没一个圆圈都会占用一个矩形区域,本案例中,可以把要显示的的圆圈所占的矩形区域都定义到裁剪区域里面,而不要显示的圆圈的矩形区域则排除到裁剪区域之外,如下图所示,绘制圆圈的矩形区域用实线表示出来,不绘制圆圈的区域用虚线表示:

只需要把所有实线表示的矩形区域都添加到要clip的路径中去,然后调用fill方法,则只会在实现定义的矩形区域显示出来圆圈。以下是示例代码:

 for(var i = 0;i < 400; i ++){
                    for(var j = 0;j < 400;j ++){
                            var r = Math.random();
                             if(r <0.2){
                              templateMap[i+":" + j] = true;
                              continue;
                            }
                              
                          var x = 10 + j * tempCanvas.width;
                          var y = 10 + i * tempCanvas.height;
                          var rect = {
                            x : x,
                            y : y,
                            width : tempCanvas.width,
                            height:tempCanvas.height
                          };
                         ctx.rect(rect.x,rect.y,rext.width,rect.height);
   }
ctx.clip();

首先遍历所有的圆圈坐标,为了演示效果,用Math.random为了模拟随机产生一个数,如果这个数小于0.2,则当前圆圈的矩形区域不会被加入裁剪区域,也就是该圆圈不会显示出来。 通过上面裁剪操作后,“擦除后的效果”算是实现了。但是,经过测试,性能却低回去了,为什么,因为增加了很多rect操作。测试下来,一幁的绘制时间大概在80多毫秒,比批量绘制还是高一点,但是感觉还是不够好。

Pattern + 合并裁剪

观察上面 “裁剪区域” 这个图,以第一行为例,第一、第二、第三个矩形区域是连在一块的,完全没有必要调用三次ctx.rect方法,而是先用算法把三个区域合并为一个矩形区域,然后调用一次ctx.rect方法即可,如下图:

下面是合并裁剪区域的算法,目前只是实现了同一行的合并,更加优化的合并算法并没有实现,代码如下:

 function calRectMap (tempCanvas){
                    if(rectMap != null){
                      return;
                    }
                    rectMap = rectMap || [];
                     for(var i = 0;i < 400; i ++){
                      for(var j = 0;j < 400;j ++){
                            var r = Math.random();
                             if(r <0.2){
                              templateMap[i+":" + j] = true;
                              continue;
                            }
                              
                          var x = 10 + j * tempCanvas.width;
                          var y = 10 + i * tempCanvas.height;
                          var rect = {
                            x : x,
                            y : y,
                            width : tempCanvas.width,
                            height:tempCanvas.height
                          };
                          lineRectMap[i] = lineRectMap[i] || [];

                          lineRectMap[i][j] = rect;
                      }
                      unionLineRects(lineRectMap[i],rectMap);
                    }
               }

               function unionLineRect(rect1,rect2){
                    return {
                        x: rect1.x,
                        y : rect1.y,
                        width:rect1.width + rect2.width,
                        height:rect1.height
                    }
               }

               function unionLineRects(lineRectMap,rectMap){
                    var lastRect = null,lastNotNullIndex = null;
                    for(var j = 0;j < 400;j ++){
                        
                        var currentRect = lineRectMap[j];
                        if(lastRect == null){
                              lastRect = currentRect;
                        }else{
                            if( lastNotNullIndex == j - 1 && currentRect){
                                lastRect = unionLineRect(lastRect,currentRect);
                            }
                        }
                        if(currentRect != null){
                          lastNotNullIndex = j;
                        }else if (lastRect){
                            rectMap.push(lastRect);
                            lastNotNullIndex = null;
                            lastRect = null;
                        }
                    }
                    if(lastRect){
                      rectMap.push(lastRect);
                    }
               }

相关合并的算法,此处不再详细说明。 合并之后,测试绘制的时间降低到了10几毫秒,算是比较好的绘制效果了:

webgl绘制

由于笔者本人也长期研究webgl的技术,所以尝试着用webgl实线了2d的绘制,相关细节不在此处赘述,后面会写专门的文章如何用webgl绘制2d图形。最终测试的效率不是很理想,差不多100多毫秒,和上面的批量绘制差不多。 因为用webgl绘制,单次的绘制效率应该不会太差,但是由于需要遍历调用10万次绘制命令,必然效率不高。另外webgl绘制的效果其实是没有2d绘制的效果好的,锯齿严重。 要实现好的效果,还需要引入去锯齿相关技术。 绘制的效果如下:

用webgl绘制2d图形的相关主题,回头会另外写一篇文章介绍。敬请关注。

webgl2绘制

webgl2 引入了实例化数组,通过这个功能,可以实现把很多次的绘制调用合并为一个绘制调用,这会极大提高绘制效率。

有关实例化数组的功能,参考https://www.jianshu.com/p/d40...

绘制10万个圆形的效率大概在每帧零点零几毫秒,简直就是大boss级别的快,如下图:

后记

通过这篇文章,除了想给读者传递相关知识点之外,其实还想表达一个观点: 相比于知识点,程序员更加需要锻炼的是底层思维能力。在我看来,底层思维能力包括:学习力、创造力、判断力和思考力。而勤于思考的人,不拘泥于司空见惯,都能够从日常枯燥的任务中发现很多有趣的东西,启发更多深入的思路。 勤于思索是很重要的。 知识是死的,人是活的,同样的知识点,在思考力强的人手上,就能延伸出很多好的解决方案。 这就要求人勤于探索,不要满足于把任务完成,而是要多深入思考,多总结,探索更多的方案和可能性。这本身有助于锻炼思考力和创造力,而思考力和创造力又会反过来帮助你解决更多的问题。

其实IT行业的知识更新越来越快,能够以不变应万变的人,就是拥有良好的学习力、创造力、判断力和思考力的人。这些能力会让你在变换万千的技术海洋中,屹立不倒,不被淹没。

当然,标书可能有点好为人师了。 在日常的工作中,彪叔更喜欢做的事情,就是启迪下属的思考,而不仅仅是某个问题的解决方案。这是比学习知识更加重要的素质。彪叔也会在我的其他文章中,分享底层能力的相关认知。有兴趣的猿们可以关注彪叔的公号:ITman彪叔

欢迎关注公众号:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券