前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习的数学基础

机器学习的数学基础

作者头像
iOSDevLog
发布2019-05-30 08:35:32
1.2K0
发布2019-05-30 08:35:32
举报
文章被收录于专栏:iOSDevLogiOSDevLog

高等数学

1.导数定义:

导数和微分的概念

f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}
f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}

(1)

或者:

f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}
f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}

(2)

2.左右导数导数的几何意义和物理意义

函数

f(x)
f(x)

x_0
x_0

处的左、右导数分别定义为:

左导数:

{{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)
{{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)

右导数:

{{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}
{{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}

3.函数的可导性与连续性之间的关系

Th1: 函数

f(x)
f(x)

x_0
x_0

处可微

\Leftrightarrow f(x)
\Leftrightarrow f(x)

x_0
x_0

处可导

Th2: 若函数在点

x_0
x_0

处可导,则

y=f(x)
y=f(x)

在点

x_0
x_0

处连续,反之则不成立。即函数连续不一定可导。

Th3:

{f}'({{x}_{0}})
{f}'({{x}_{0}})

存在

\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})
\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})

4.平面曲线的切线和法线

切线方程 :

y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})
y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})

法线方程:

y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0
y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0

5.四则运算法则 设函数

u=u(x),v=v(x)
u=u(x),v=v(x)

]在点

x
x

可导则 (1)

(u\pm v{)}'={u}'\pm {v}'
(u\pm v{)}'={u}'\pm {v}'
d(u\pm v)=du\pm dv
d(u\pm v)=du\pm dv

(2)

(uv{)}'=u{v}'+v{u}'
(uv{)}'=u{v}'+v{u}'
d(uv)=udv+vdu
d(uv)=udv+vdu

(3)

(\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)
(\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)
d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}
d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}

6.基本导数与微分表 (1)

y=c​
y=c​

(常数)

{y}'=0​
{y}'=0​
dy=0​
dy=0​

(2)

y={{x}^{\alpha }}​
y={{x}^{\alpha }}​

(

\alpha ​
\alpha ​

为实数)

{y}'=\alpha {{x}^{\alpha -1}}​
{y}'=\alpha {{x}^{\alpha -1}}​
dy=\alpha {{x}^{\alpha -1}}dx​
dy=\alpha {{x}^{\alpha -1}}dx​

(3)

y={{a}^{x}}​
y={{a}^{x}}​
{y}'={{a}^{x}}\ln a​
{y}'={{a}^{x}}\ln a​
dy={{a}^{x}}\ln adx​
dy={{a}^{x}}\ln adx​

特例:

({{{e}}^{x}}{)}'={{{e}}^{x}}​
({{{e}}^{x}}{)}'={{{e}}^{x}}​
d({{{e}}^{x}})={{{e}}^{x}}dx​
d({{{e}}^{x}})={{{e}}^{x}}dx​

(4)

y={{\log }_{a}}x
y={{\log }_{a}}x
{y}'=\frac{1}{x\ln a}
{y}'=\frac{1}{x\ln a}
dy=\frac{1}{x\ln a}dx
dy=\frac{1}{x\ln a}dx

特例:

y=\ln x
y=\ln x
(\ln x{)}'=\frac{1}{x}
(\ln x{)}'=\frac{1}{x}
d(\ln x)=\frac{1}{x}dx
d(\ln x)=\frac{1}{x}dx

(5)

y=\sin x
y=\sin x
{y}'=\cos x
{y}'=\cos x
d(\sin x)=\cos xdx
d(\sin x)=\cos xdx

(6)

y=\cos x
y=\cos x
{y}'=-\sin x
{y}'=-\sin x
d(\cos x)=-\sin xdx
d(\cos x)=-\sin xdx

(7)

y=\tan x
y=\tan x
{y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x
{y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x
d(\tan x)={{\sec }^{2}}xdx
d(\tan x)={{\sec }^{2}}xdx

(8)

y=\cot x
y=\cot x
{y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x
{y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x
d(\cot x)=-{{\csc }^{2}}xdx
d(\cot x)=-{{\csc }^{2}}xdx

(9)

y=\sec x
y=\sec x
{y}'=\sec x\tan x
{y}'=\sec x\tan x
d(\sec x)=\sec x\tan xdx
d(\sec x)=\sec x\tan xdx

(10)

y=\csc x
y=\csc x
{y}'=-\csc x\cot x
{y}'=-\csc x\cot x
d(\csc x)=-\csc x\cot xdx
d(\csc x)=-\csc x\cot xdx

(11)

y=\arcsin x
y=\arcsin x
{y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}
{y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}
d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx
d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx

(12)

y=\arccos x
y=\arccos x
{y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}
{y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}
d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx
d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx

(13)

y=\arctan x
y=\arctan x
{y}'=\frac{1}{1+{{x}^{2}}}
{y}'=\frac{1}{1+{{x}^{2}}}
d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx
d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx

(14)

y=\operatorname{arc}\cot x
y=\operatorname{arc}\cot x
{y}'=-\frac{1}{1+{{x}^{2}}}
{y}'=-\frac{1}{1+{{x}^{2}}}
d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx
d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx

(15)

y=shx
y=shx
{y}'=chx
{y}'=chx
d(shx)=chxdx
d(shx)=chxdx

(16)

y=chx
y=chx
{y}'=shx
{y}'=shx
d(chx)=shxdx
d(chx)=shxdx

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设

y=f(x)
y=f(x)

在点

x
x

的某邻域内单调连续,在点

x
x

处可导且

{f}'(x)\ne 0
{f}'(x)\ne 0

,则其反函数在点

x
x

所对应的

y
y

处可导,并且有

\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}
\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}

(2) 复合函数的运算法则:若

\mu =\varphi (x)
\mu =\varphi (x)

在点

x
x

可导,而

y=f(\mu )
y=f(\mu )

在对应点

\mu
\mu

(

\mu =\varphi (x)
\mu =\varphi (x)

)可导,则复合函数

y=f(\varphi (x))
y=f(\varphi (x))

在点

x
x

可导,且

{y}'={f}'(\mu )\cdot {\varphi }'(x)
{y}'={f}'(\mu )\cdot {\varphi }'(x)

(3) 隐函数导数

\frac{dy}{dx}
\frac{dy}{dx}

的求法一般有三种方法: 1)方程两边对

x
x

求导,要记住

y
y

x
x

的函数,则

y
y

的函数是

x
x

的复合函数.例如

\frac{1}{y}
\frac{1}{y}

{{y}^{2}}
{{y}^{2}}

ln y
ln y

{{{e}}^{y}}
{{{e}}^{y}}

等均是

x
x

的复合函数. 对

x
x

求导应按复合函数连锁法则做. 2)公式法.由

F(x,y)=0
F(x,y)=0

\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}
\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}

,其中,

{{{F}'}_{x}}(x,y)
{{{F}'}_{x}}(x,y)

{{{F}'}_{y}}(x,y)
{{{F}'}_{y}}(x,y)

分别表示

F(x,y)
F(x,y)

x
x

y
y

的偏导数 3)利用微分形式不变性

8.常用高阶导数公式

(1)

({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}
({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}

(2)

(\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})
(\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})

(3)

(\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})
(\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})

(4)

({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}
({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}

(5)

(\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}
(\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}

(6)莱布尼兹公式:若

u(x)\,,v(x)
u(x)\,,v(x)

n
n

阶可导,则

{{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}
{{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}

,其中

{{u}^{({0})}}=u
{{u}^{({0})}}=u

{{v}^{({0})}}=v
{{v}^{({0})}}=v

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数

f(x)
f(x)

满足条件: (1)函数

f(x)
f(x)

{{x}_{0}}
{{x}_{0}}

的某邻域内有定义,并且在此邻域内恒有

f(x)\le f({{x}_{0}})
f(x)\le f({{x}_{0}})

f(x)\ge f({{x}_{0}})
f(x)\ge f({{x}_{0}})

,

(2)

f(x)
f(x)

{{x}_{0}}
{{x}_{0}}

处可导,则有

{f}'({{x}_{0}})=0
{f}'({{x}_{0}})=0

Th2:(罗尔定理)

设函数

f(x)
f(x)

满足条件: (1)在闭区间

[a,b]
[a,b]

上连续;

(2)在

(a,b)
(a,b)

内可导;

(3)

f(a)=f(b)
f(a)=f(b)

则在

(a,b)
(a,b)

内一存在个

\xi
\xi

,使

{f}'(\xi )=0
{f}'(\xi )=0

Th3: (拉格朗日中值定理)

设函数

f(x)
f(x)

满足条件: (1)在

[a,b]
[a,b]

上连续;

(2)在

(a,b)
(a,b)

内可导;

则在

(a,b)
(a,b)

内一存在个

\xi
\xi

,使

\frac{f(b)-f(a)}{b-a}={f}'(\xi )
\frac{f(b)-f(a)}{b-a}={f}'(\xi )

Th4: (柯西中值定理)

设函数

f(x)
f(x)

g(x)
g(x)

满足条件: (1) 在

[a,b]
[a,b]

上连续;

(2) 在

(a,b)
(a,b)

内可导且

{f}'(x)
{f}'(x)

{g}'(x)
{g}'(x)

均存在,且

{g}'(x)\ne 0
{g}'(x)\ne 0

则在

(a,b)
(a,b)

内存在一个

\xi
\xi

,使

\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}

10.洛必达法则 法则Ⅰ (

\frac{0}{0}
\frac{0}{0}

型) 设函数

f\left( x \right),g\left( x \right)
f\left( x \right),g\left( x \right)

满足条件:

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0

;

f\left( x \right),g\left( x \right)
f\left( x \right),g\left( x \right)

{{x}_{0}}
{{x}_{0}}

的邻域内可导,(在

{{x}_{0}}
{{x}_{0}}

处可除外)且

{g}'\left( x \right)\ne 0
{g}'\left( x \right)\ne 0

;

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

存在(或

\infty
\infty

)。

则:

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

。 法则

{{I}'}
{{I}'}

(

\frac{0}{0}
\frac{0}{0}

型)设函数

f\left( x \right),g\left( x \right)
f\left( x \right),g\left( x \right)

满足条件:

\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0
\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0

;

存在一个

X>0
X>0

,当

\left| x \right|>X
\left| x \right|>X

时,

f\left( x \right),g\left( x \right)
f\left( x \right),g\left( x \right)

可导,且

{g}'\left( x \right)\ne 0
{g}'\left( x \right)\ne 0

;

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

存在(或

\infty
\infty

)。

则:

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

法则Ⅱ(

\frac{\infty }{\infty }
\frac{\infty }{\infty }

型) 设函数

f\left( x \right),g\left( x \right)
f\left( x \right),g\left( x \right)

满足条件:

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty ,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty ,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty

;

f\left( x \right),g\left( x \right)
f\left( x \right),g\left( x \right)

{{x}_{0}}
{{x}_{0}}

的邻域内可导(在

{{x}_{0}}
{{x}_{0}}

处可除外)且

{g}'\left( x \right)\ne 0
{g}'\left( x \right)\ne 0

;

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}

存在(或

\infty
\infty

)。则

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}.
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}.

同理法则

{I{I}'}
{I{I}'}

(

\frac{\infty }{\infty }
\frac{\infty }{\infty }

型)仿法则

{{I}'}
{{I}'}

可写出。

11.泰勒公式

设函数

f(x)
f(x)

在点

{{x}_{0}}
{{x}_{0}}

处的某邻域内具有

n+1
n+1

阶导数,则对该邻域内异于

{{x}_{0}}
{{x}_{0}}

的任意点

x
x

,在

{{x}_{0}}
{{x}_{0}}

x
x

之间至少存在 一个

\xi
\xi

,使得:

f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots
f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots
+\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)
+\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)

其中

{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}
{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}

称为

f(x)
f(x)

在点

{{x}_{0}}
{{x}_{0}}

处的

n
n

阶泰勒余项。

{{x}_{0}}=0
{{x}_{0}}=0

,则

n
n

阶泰勒公式

f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)
f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)

……(1) 其中

{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}
{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}

\xi
\xi

在0与

x
x

之间.(1)式称为麦克劳林公式

常用五种函数在

{{x}_{0}}=0
{{x}_{0}}=0

处的泰勒公式

(1)

{{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}
{{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}

=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})
=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})

(2)

\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )
\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )

=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})
=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})

(3)

\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )
\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )

=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})
=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})

(4)

\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}
\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}

=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})
=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})

(5)

{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}
{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}
+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}
+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}

{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots
{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots
+\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})
+\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})

12.函数单调性的判断 Th1: 设函数

f(x)
f(x)

(a,b)
(a,b)

区间内可导,如果对

\forall x\in (a,b)
\forall x\in (a,b)

,都有

f\,'(x)>0
f\,'(x)>0

(或

f\,'(x)<0
f\,'(x)<0

),则函数

f(x)
f(x)

(a,b)
(a,b)

内是单调增加的(或单调减少)

Th2: (取极值的必要条件)设函数

f(x)
f(x)

{{x}_{0}}
{{x}_{0}}

处可导,且在

{{x}_{0}}
{{x}_{0}}

处取极值,则

f\,'({{x}_{0}})=0
f\,'({{x}_{0}})=0

Th3: (取极值的第一充分条件)设函数

f(x)
f(x)

{{x}_{0}}
{{x}_{0}}

的某一邻域内可微,且

f\,'({{x}_{0}})=0
f\,'({{x}_{0}})=0

(或

f(x)
f(x)

{{x}_{0}}
{{x}_{0}}

处连续,但

f\,'({{x}_{0}})
f\,'({{x}_{0}})

不存在。) (1)若当

x
x

经过

{{x}_{0}}
{{x}_{0}}

时,

f\,'(x)
f\,'(x)

由“+”变“-”,则

f({{x}_{0}})
f({{x}_{0}})

为极大值; (2)若当

x​
x​

经过

{{x}_{0}}​
{{x}_{0}}​

时,

f\,'(x)
f\,'(x)

由“-”变“+”,则

f({{x}_{0}})
f({{x}_{0}})

为极小值; (3)若

f\,'(x)
f\,'(x)

经过

x={{x}_{0}}
x={{x}_{0}}

的两侧不变号,则

f({{x}_{0}})
f({{x}_{0}})

不是极值。

Th4: (取极值的第二充分条件)设

f(x)
f(x)

在点

{{x}_{0}}
{{x}_{0}}

处有

f''(x)\ne 0
f''(x)\ne 0

,且

f\,'({{x}_{0}})=0
f\,'({{x}_{0}})=0

,则 当

f'\,'({{x}_{0}})<0
f'\,'({{x}_{0}})<0

时,

f({{x}_{0}})
f({{x}_{0}})

为极大值; 当

f'\,'({{x}_{0}})>0
f'\,'({{x}_{0}})>0

时,

f({{x}_{0}})
f({{x}_{0}})

为极小值。 注:如果

f'\,'({{x}_{0}})<0
f'\,'({{x}_{0}})<0

,此方法失效。

13.渐近线的求法 (1)水平渐近线 若

\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b
\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b

,或

\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b
\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b

,则

y=b
y=b

称为函数

y=f(x)
y=f(x)

的水平渐近线。

(2)铅直渐近线 若

\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty
\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty

,或

\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty
\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty

,则

x={{x}_{0}}
x={{x}_{0}}

称为

y=f(x)
y=f(x)

的铅直渐近线。

(3)斜渐近线 若

a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]
a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]

,则

y=ax+b
y=ax+b

称为

y=f(x)
y=f(x)

的斜渐近线。

14.函数凹凸性的判断 Th1: (凹凸性的判别定理)若在I上

f''(x)<0
f''(x)<0

(或

f''(x)>0
f''(x)>0

),则

f(x)
f(x)

在I上是凸的(或凹的)。

Th2: (拐点的判别定理1)若在

{{x}_{0}}
{{x}_{0}}

f''(x)=0
f''(x)=0

,(或

f''(x)
f''(x)

不存在),当

x
x

变动经过

{{x}_{0}}
{{x}_{0}}

时,

f''(x)
f''(x)

变号,则

({{x}_{0}},f({{x}_{0}}))
({{x}_{0}},f({{x}_{0}}))

为拐点。

Th3: (拐点的判别定理2)设

f(x)
f(x)

{{x}_{0}}
{{x}_{0}}

点的某邻域内有三阶导数,且

f''(x)=0
f''(x)=0

f'''(x)\ne 0
f'''(x)\ne 0

,则

({{x}_{0}},f({{x}_{0}}))
({{x}_{0}},f({{x}_{0}}))

为拐点。

15.弧微分

dS=\sqrt{1+y{{'}^{2}}}dx
dS=\sqrt{1+y{{'}^{2}}}dx

16.曲率

曲线

y=f(x)
y=f(x)

在点

(x,y)
(x,y)

处的曲率

k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}
k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}

。 对于参数方程

\left\{ \begin{align} & x=\varphi (t) \\ & y=\psi (t) \\ \end{align} \right.,$$k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}
\left\{ \begin{align} & x=\varphi (t) \\ & y=\psi (t) \\ \end{align} \right.,$$k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}

17.曲率半径

曲线在点

M
M

处的曲率

k(k\ne 0)
k(k\ne 0)

与曲线在点

M
M

处的曲率半径

\rho
\rho

有如下关系:

\rho =\frac{1}{k}
\rho =\frac{1}{k}

线性代数

行列式

1.行列式按行(列)展开定理

(1) 设

A = ( a_{{ij}} )_{n \times n}
A = ( a_{{ij}} )_{n \times n}

,则:

a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}
a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}

a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}
a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}

AA^{*} = A^{*}A = \left| A \right|E,
AA^{*} = A^{*}A = \left| A \right|E,

其中:

A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}
A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}
D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})
D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

(2) 设

A,B
A,B

n
n

阶方阵,则

\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|
\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|

,但

\left| A \pm B \right| = \left| A \right| \pm \left| B \right|
\left| A \pm B \right| = \left| A \right| \pm \left| B \right|

不一定成立。

(3)

\left| {kA} \right| = k^{n}\left| A \right|
\left| {kA} \right| = k^{n}\left| A \right|

,

A
A

n
n

阶方阵。

(4) 设

A
A

n
n

阶方阵,

|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}
|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}

(若

A
A

可逆),

|A^{*}| = |A|^{n - 1}
|A^{*}| = |A|^{n - 1}
n \geq 2
n \geq 2

(5)

\left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B|
\left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B|

A,B
A,B

为方阵,但

\left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B|
\left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B|

(6) 范德蒙行列式

D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})
D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

A
A

n
n

阶方阵,

\lambda_{i}(i = 1,2\cdots,n)
\lambda_{i}(i = 1,2\cdots,n)

A
A

n
n

个特征值,则

|A| = \prod_{i = 1}^{n}\lambda_{i}​
|A| = \prod_{i = 1}^{n}\lambda_{i}​
矩阵

矩阵:

m \times n
m \times n

个数

a_{{ij}}
a_{{ij}}

排成

m
m

n
n

列的表格

\begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix}
\begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix}

称为矩阵,简记为

A
A

,或者

\left( a_{{ij}} \right)_{m \times n}
\left( a_{{ij}} \right)_{m \times n}

。若

m = n
m = n

,则称

A
A

n
n

阶矩阵或

n
n

阶方阵。

矩阵的线性运算

1.矩阵的加法

A = (a_{{ij}}),B = (b_{{ij}})
A = (a_{{ij}}),B = (b_{{ij}})

是两个

m \times n
m \times n

矩阵,则

m \times n
m \times n

矩阵

C = c_{{ij}}) = a_{{ij}} + b_{{ij}}
C = c_{{ij}}) = a_{{ij}} + b_{{ij}}

称为矩阵

A
A

B
B

的和,记为

A + B = C
A + B = C

2.矩阵的数乘

A = (a_{{ij}})
A = (a_{{ij}})

m \times n
m \times n

矩阵,

k
k

是一个常数,则

m \times n
m \times n

矩阵

(ka_{{ij}})
(ka_{{ij}})

称为数

k
k

与矩阵

A
A

的数乘,记为

{kA}
{kA}

3.矩阵的乘法

A = (a_{{ij}})
A = (a_{{ij}})

m \times n
m \times n

矩阵,

B = (b_{{ij}})
B = (b_{{ij}})

n \times s
n \times s

矩阵,那么

m \times s
m \times s

矩阵

C = (c_{{ij}})
C = (c_{{ij}})

,其中

c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}
c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}

称为

{AB}
{AB}

的乘积,记为

C = AB
C = AB

4.

\mathbf{A}^{\mathbf{T}}
\mathbf{A}^{\mathbf{T}}

\mathbf{A}^{\mathbf{-1}}
\mathbf{A}^{\mathbf{-1}}

\mathbf{A}^{\mathbf{*}}
\mathbf{A}^{\mathbf{*}}

三者之间的关系

(1)

{(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}
{(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}

(2)

\left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},
\left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},

{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}
{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}

不一定成立。

(3)

\left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)
\left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)

\left({AB} \right)^{*} = B^{*}A^{*},
\left({AB} \right)^{*} = B^{*}A^{*},
\left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)
\left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)

\left( A \pm B \right)^{*} = A^{*} \pm B^{*}
\left( A \pm B \right)^{*} = A^{*} \pm B^{*}

不一定成立。

(4)

{(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}
{(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}

5.有关

\mathbf{A}^{\mathbf{*}}
\mathbf{A}^{\mathbf{*}}

的结论

(1)

AA^{*} = A^{*}A = |A|E
AA^{*} = A^{*}A = |A|E

(2)

|A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)
|A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)

(3) 若

A
A

可逆,则

A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A
A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A

(4) 若

A​
A​

n​
n​

阶方阵,则:

r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}
r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}

6.有关

\mathbf{A}^{\mathbf{- 1}}
\mathbf{A}^{\mathbf{- 1}}

的结论

A
A

可逆

\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;
\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;
\Leftrightarrow A
\Leftrightarrow A

可以表示为初等矩阵的乘积;

\Leftrightarrow A;\Leftrightarrow Ax = 0
\Leftrightarrow A;\Leftrightarrow Ax = 0

7.有关矩阵秩的结论

(1) 秩

r(A)
r(A)

=行秩=列秩;

(2)

r(A_{m \times n}) \leq \min(m,n);
r(A_{m \times n}) \leq \min(m,n);

(3)

A \neq 0 \Rightarrow r(A) \geq 1
A \neq 0 \Rightarrow r(A) \geq 1

(4)

r(A \pm B) \leq r(A) + r(B);
r(A \pm B) \leq r(A) + r(B);

(5) 初等变换不改变矩阵的秩

(6)

r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),
r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),

特别若

AB = O
AB = O

则:

r(A) + r(B) \leq n
r(A) + r(B) \leq n

(7) 若

A^{- 1}
A^{- 1}

存在

\Rightarrow r(AB) = r(B);
\Rightarrow r(AB) = r(B);

B^{- 1}
B^{- 1}

存在

\Rightarrow r(AB) = r(A);
\Rightarrow r(AB) = r(A);

r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);
r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);

r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)
r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)

(8)

r(A_{m \times s}) = n \Leftrightarrow Ax = 0
r(A_{m \times s}) = n \Leftrightarrow Ax = 0

只有零解

8.分块求逆公式

\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}
\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}

\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}
\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}

\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}
\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}

\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}
\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}

这里

A
A

B
B

均为可逆方阵。

向量

1.有关向量组的线性表示

(1)

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性相关

\Leftrightarrow
\Leftrightarrow

至少有一个向量可以用其余向量线性表示。

(2)

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性无关,

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

\beta
\beta

线性相关

\Leftrightarrow \beta
\Leftrightarrow \beta

可以由

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

唯一线性表示。

(3)

\beta
\beta

可以由

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性表示

\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)
\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ①

n
n

n
n

维向量

\alpha_{1},\alpha_{2}\cdots\alpha_{n}
\alpha_{1},\alpha_{2}\cdots\alpha_{n}

线性无关

\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0
\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0

n
n

n
n

维向量

\alpha_{1},\alpha_{2}\cdots\alpha_{n}
\alpha_{1},\alpha_{2}\cdots\alpha_{n}

线性相关

\Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0
\Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0

n + 1
n + 1

n
n

维向量线性相关。

③ 若

\alpha_{1},\alpha_{2}\cdots\alpha_{S}
\alpha_{1},\alpha_{2}\cdots\alpha_{S}

线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1)

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性相关

\Leftrightarrow
\Leftrightarrow

至少有一个向量可以用其余向量线性表示。

(2)

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性无关,

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

\beta
\beta

线性相关

\Leftrightarrow\beta
\Leftrightarrow\beta

可以由

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

唯一线性表示。

(3)

\beta
\beta

可以由

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性表示

\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)
\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

4.向量组的秩与矩阵的秩之间的关系

r(A_{m \times n}) =r
r(A_{m \times n}) =r

,则

A
A

的秩

r(A)
r(A)

A
A

的行列向量组的线性相关性关系为:

(1) 若

r(A_{m \times n}) = r = m
r(A_{m \times n}) = r = m

,则

A
A

的行向量组线性无关。

(2) 若

r(A_{m \times n}) = r < m
r(A_{m \times n}) = r < m

,则

A
A

的行向量组线性相关。

(3) 若

r(A_{m \times n}) = r = n
r(A_{m \times n}) = r = n

,则

A
A

的列向量组线性无关。

(4) 若

r(A_{m \times n}) = r < n
r(A_{m \times n}) = r < n

,则

A
A

的列向量组线性相关。

5.

\mathbf{n}
\mathbf{n}

维向量空间的基变换公式及过渡矩阵

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

\beta_{1},\beta_{2},\cdots,\beta_{n}
\beta_{1},\beta_{2},\cdots,\beta_{n}

是向量空间

V
V

的两组基,则基变换公式为:

(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C
(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C

其中

C
C

是可逆矩阵,称为由基

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

到基

\beta_{1},\beta_{2},\cdots,\beta_{n}
\beta_{1},\beta_{2},\cdots,\beta_{n}

的过渡矩阵。

6.坐标变换公式

若向量

\gamma
\gamma

在基

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

与基

\beta_{1},\beta_{2},\cdots,\beta_{n}
\beta_{1},\beta_{2},\cdots,\beta_{n}

的坐标分别是

X = {(x_{1},x_{2},\cdots,x_{n})}^{T}
X = {(x_{1},x_{2},\cdots,x_{n})}^{T}

Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T}
Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T}

即:

\gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n}
\gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n}

,则向量坐标变换公式为

X = CY
X = CY

Y = C^{- 1}X
Y = C^{- 1}X

,其中

C
C

是从基

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

到基

\beta_{1},\beta_{2},\cdots,\beta_{n}
\beta_{1},\beta_{2},\cdots,\beta_{n}

的过渡矩阵。

7.向量的内积

(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha
(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha

8.Schmidt正交化

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

线性无关,则可构造

\beta_{1},\beta_{2},\cdots,\beta_{s}
\beta_{1},\beta_{2},\cdots,\beta_{s}

使其两两正交,且

\beta_{i}
\beta_{i}

仅是

\alpha_{1},\alpha_{2},\cdots,\alpha_{i}
\alpha_{1},\alpha_{2},\cdots,\alpha_{i}

的线性组合

(i= 1,2,\cdots,n)
(i= 1,2,\cdots,n)

,再把

\beta_{i}
\beta_{i}

单位化,记

\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|}
\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|}

,则

\gamma_{1},\gamma_{2},\cdots,\gamma_{i}
\gamma_{1},\gamma_{2},\cdots,\gamma_{i}

是规范正交向量组。其中

\beta_{1} = \alpha_{1}
\beta_{1} = \alpha_{1}

\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}
\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}

\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}
\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}

............

\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}
\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组

1.克莱姆法则

线性方程组

\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases}
\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases}

,如果系数行列式

D = \left| A \right| \neq 0
D = \left| A \right| \neq 0

,则方程组有唯一解,

x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D}
x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D}

,其中

D_{j}
D_{j}

是把

D
D

中第

j
j

列元素换成方程组右端的常数列所得的行列式。

2.

n
n

阶矩阵

A
A

可逆

\Leftrightarrow Ax = 0
\Leftrightarrow Ax = 0

只有零解。

\Leftrightarrow\forall b,Ax = b
\Leftrightarrow\forall b,Ax = b

总有唯一解,一般地,

r(A_{m \times n}) = n \Leftrightarrow Ax= 0
r(A_{m \times n}) = n \Leftrightarrow Ax= 0

只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设

A
A

m \times n
m \times n

矩阵,若

r(A_{m \times n}) = m
r(A_{m \times n}) = m

,则对

Ax =b
Ax =b

而言必有

r(A) = r(A \vdots b) = m
r(A) = r(A \vdots b) = m

,从而

Ax = b
Ax = b

有解。

(2) 设

x_{1},x_{2},\cdots x_{s}
x_{1},x_{2},\cdots x_{s}

Ax = b
Ax = b

的解,则

k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s}
k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s}

k_{1} + k_{2} + \cdots + k_{s} = 1
k_{1} + k_{2} + \cdots + k_{s} = 1

时仍为

Ax =b
Ax =b

的解;但当

k_{1} + k_{2} + \cdots + k_{s} = 0
k_{1} + k_{2} + \cdots + k_{s} = 0

时,则为

Ax =0
Ax =0

的解。特别

\frac{x_{1} + x_{2}}{2}
\frac{x_{1} + x_{2}}{2}

Ax = b
Ax = b

的解;

2x_{3} - (x_{1} +x_{2})
2x_{3} - (x_{1} +x_{2})

Ax = 0
Ax = 0

的解。

(3) 非齐次线性方程组

{Ax} = b
{Ax} = b

无解

\Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b
\Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b

不能由

A
A

的列向量

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}
\alpha_{1},\alpha_{2},\cdots,\alpha_{n}

线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组

{Ax} = 0
{Ax} = 0

恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此

{Ax}= 0
{Ax}= 0

的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是

n - r(A)
n - r(A)

,解空间的一组基称为齐次方程组的基础解系。

(2)

\eta_{1},\eta_{2},\cdots,\eta_{t}
\eta_{1},\eta_{2},\cdots,\eta_{t}

{Ax} = 0
{Ax} = 0

的基础解系,即:

\eta_{1},\eta_{2},\cdots,\eta_{t}
\eta_{1},\eta_{2},\cdots,\eta_{t}

{Ax} = 0
{Ax} = 0

的解;

\eta_{1},\eta_{2},\cdots,\eta_{t}
\eta_{1},\eta_{2},\cdots,\eta_{t}

线性无关;

{Ax} = 0
{Ax} = 0

的任一解都可以由

\eta_{1},\eta_{2},\cdots,\eta_{t}
\eta_{1},\eta_{2},\cdots,\eta_{t}

线性表出.

k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}
k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}

{Ax} = 0
{Ax} = 0

的通解,其中

k_{1},k_{2},\cdots,k_{t}
k_{1},k_{2},\cdots,k_{t}

是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设

\lambda
\lambda

A
A

的一个特征值,则

{kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}
{kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}

有一个特征值分别为

{kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},
{kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},

且对应特征向量相同(

A^{T}
A^{T}

例外)。

(2)若

\lambda_{1},\lambda_{2},\cdots,\lambda_{n}
\lambda_{1},\lambda_{2},\cdots,\lambda_{n}

A
A

n
n

个特征值,则

\sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A|
\sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A|

,从而

|A| \neq 0 \Leftrightarrow A
|A| \neq 0 \Leftrightarrow A

没有特征值。

(3)设

\lambda_{1},\lambda_{2},\cdots,\lambda_{s}
\lambda_{1},\lambda_{2},\cdots,\lambda_{s}

A
A

s
s

个特征值,对应特征向量为

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}

若:

\alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s}
\alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s}

,

则:

A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}
A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}

2.相似变换、相似矩阵的概念及性质

(1) 若

A \sim B
A \sim B

,则

A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}
A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}
|A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B)
|A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B)
|\lambda E - A| = |\lambda E - B|
|\lambda E - A| = |\lambda E - B|

,对

\forall\lambda
\forall\lambda

成立

3.矩阵可相似对角化的充分必要条件

(1)设

A
A

n
n

阶方阵,则

A
A

可对角化

\Leftrightarrow
\Leftrightarrow

对每个

k_{i}
k_{i}

重根特征值

\lambda_{i}
\lambda_{i}

,有

n-r(\lambda_{i}E - A) = k_{i}
n-r(\lambda_{i}E - A) = k_{i}

(2) 设

A
A

可对角化,则由

P^{- 1}{AP} = \Lambda,
P^{- 1}{AP} = \Lambda,

A = {PΛ}P^{-1}
A = {PΛ}P^{-1}

,从而

A^{n} = P\Lambda^{n}P^{- 1}
A^{n} = P\Lambda^{n}P^{- 1}

(3) 重要结论

A \sim B,C \sim D​
A \sim B,C \sim D​

,则

\begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix}​
\begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix}​

.

A \sim B
A \sim B

,则

f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right|
f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right|

,其中

f(A)
f(A)

为关于

n
n

阶方阵

A
A

的多项式。

A
A

为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(

A
A

)

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设

A,B
A,B

为两个

n
n

阶方阵,如果存在一个可逆矩阵

P
P

,使得

B =P^{- 1}{AP}
B =P^{- 1}{AP}

成立,则称矩阵

A
A

B
B

相似,记为

A \sim B
A \sim B

(2)相似矩阵的性质:如果

A \sim B
A \sim B

则有:

A^{T} \sim B^{T}
A^{T} \sim B^{T}
A^{- 1} \sim B^{- 1}
A^{- 1} \sim B^{- 1}

(若

A
A

B
B

均可逆)

A^{k} \sim B^{k}
A^{k} \sim B^{k}

k
k

为正整数)

\left| {λE} - A \right| = \left| {λE} - B \right|
\left| {λE} - A \right| = \left| {λE} - B \right|

,从而

A,B
A,B

有相同的特征值

\left| A \right| = \left| B \right|
\left| A \right| = \left| B \right|

,从而

A,B
A,B

同时可逆或者不可逆

\left( A \right) =
\left( A \right) =

\left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right|
\left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right|

A,B
A,B

不一定相似

二次型

1.

\mathbf{n}
\mathbf{n}

个变量

\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}
\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}

的二次齐次函数

f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}}
f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}}

,其中

a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n)
a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n)

,称为

n
n

元二次型,简称二次型. 若令

x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix}
x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix}

,这二次型

f
f

可改写成矩阵向量形式

f =x^{T}{Ax}
f =x^{T}{Ax}

。其中

A
A

称为二次型矩阵,因为

a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n)
a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n)

,所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵

A
A

的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型

f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax}
f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax}

经过合同变换

x = {Cy}
x = {Cy}

化为

f = x^{T}{Ax} =y^{T}C^{T}{AC}
f = x^{T}{Ax} =y^{T}C^{T}{AC}
y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}
y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}

称为

f(r \leq n)
f(r \leq n)

的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由

r(A)
r(A)

唯一确定。

(3) 规范形

任一实二次型

f
f

都可经过合同变换化为规范形

f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2}
f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2}

,其中

r
r

A
A

的秩,

p
p

为正惯性指数,

r -p
r -p

为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

A
A

正定

\Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*}
\Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*}

正定;

|A| >0
|A| >0

,

A
A

可逆;

a_{{ii}} > 0
a_{{ii}} > 0

,且

|A_{{ii}}| > 0
|A_{{ii}}| > 0
A
A

B
B

正定

\Rightarrow A +B
\Rightarrow A +B

正定,但

{AB}
{AB}

{BA}
{BA}

不一定正定

A
A

正定

\Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0
\Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0
\Leftrightarrow A
\Leftrightarrow A

的各阶顺序主子式全大于零

\Leftrightarrow A
\Leftrightarrow A

的所有特征值大于零

\Leftrightarrow A
\Leftrightarrow A

的正惯性指数为

n
n
\Leftrightarrow
\Leftrightarrow

存在可逆阵

P
P

使

A = P^{T}P
A = P^{T}P
\Leftrightarrow
\Leftrightarrow

存在正交矩阵

Q
Q

,使

Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix},
Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix},

其中

\lambda_{i} > 0,i = 1,2,\cdots,n.
\lambda_{i} > 0,i = 1,2,\cdots,n.

正定

\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}
\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}

正定;

|A| > 0,A
|A| > 0,A

可逆;

a_{{ii}} >0
a_{{ii}} >0

,且

|A_{{ii}}| > 0
|A_{{ii}}| > 0

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件:

A \subset B
A \subset B

,若

A
A

发生,则

B
B

发生。

(2) 相等事件:

A = B
A = B

,即

A \subset B
A \subset B

,且

B \subset A
B \subset A

(3) 和事件:

A\bigcup B
A\bigcup B

(或

A + B
A + B

),

A
A

B
B

中至少有一个发生。

(4) 差事件:

A - B
A - B

A
A

发生但

B
B

不发生。

(5) 积事件:

A\bigcap B
A\bigcap B

(或

{AB}
{AB}

),

A
A

B
B

同时发生。

(6) 互斥事件(互不相容):

A\bigcap B
A\bigcap B

=

\varnothing
\varnothing

(7) 互逆事件(对立事件):

A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}
A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}

2.运算律 (1) 交换律:

A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A
A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A

(2) 结合律:

(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)
(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)

(3) 分配律:

(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)
(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)

3.德

\centerdot
\centerdot

摩根律

\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}
\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}
\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}
\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}

4.完全事件组

{{A}_{1}}{{A}_{2}}\cdots {{A}_{n}}
{{A}_{1}}{{A}_{2}}\cdots {{A}_{n}}

两两互斥,且和事件为必然事件,即

{{A}_{i}}\bigcap {{A}_{j}}=\varnothing, i\ne j ,\underset{i=1}{\overset{n}{\mathop \bigcup }}\,=\Omega
{{A}_{i}}\bigcap {{A}_{j}}=\varnothing, i\ne j ,\underset{i=1}{\overset{n}{\mathop \bigcup }}\,=\Omega

5.概率的基本公式 (1)条件概率:

P(B|A)=\frac{P(AB)}{P(A)}
P(B|A)=\frac{P(AB)}{P(A)}

,表示

A
A

发生的条件下,

B
B

发生的概率。 (2)全概率公式:

P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega
P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega

(3) Bayes公式:

P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n
P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n

注:上述公式中事件

{{B}_{i}}
{{B}_{i}}

的个数可为可列个。 (4)乘法公式:

P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})
P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})
P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})
P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})

6.事件的独立性 (1)

A
A

B
B

相互独立

\Leftrightarrow P(AB)=P(A)P(B)
\Leftrightarrow P(AB)=P(A)P(B)

(2)

A
A

B
B

C
C

两两独立

\Leftrightarrow P(AB)=P(A)P(B)
\Leftrightarrow P(AB)=P(A)P(B)

;

P(BC)=P(B)P(C)
P(BC)=P(B)P(C)

;

P(AC)=P(A)P(C)
P(AC)=P(A)P(C)

; (3)

A
A

B
B

C
C

相互独立

\Leftrightarrow P(AB)=P(A)P(B)
\Leftrightarrow P(AB)=P(A)P(B)

;

P(BC)=P(B)P(C)
P(BC)=P(B)P(C)

;

P(AC)=P(A)P(C)
P(AC)=P(A)P(C)

;

P(ABC)=P(A)P(B)P(C)
P(ABC)=P(A)P(B)P(C)

7.独立重复试验

将某试验独立重复

n
n

次,若每次实验中事件A发生的概率为

p
p

,则

n
n

次试验中

A
A

发生

k
k

次的概率为:

P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}
P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}

8.重要公式与结论

(1)P(\bar{A})=1-P(A)
(1)P(\bar{A})=1-P(A)
(2)P(A\bigcup B)=P(A)+P(B)-P(AB)
(2)P(A\bigcup B)=P(A)+P(B)-P(AB)
P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)
P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)
(3)P(A-B)=P(A)-P(AB)
(3)P(A-B)=P(A)-P(AB)
(4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}),
(4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}),
P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)
P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)

(5)条件概率

P(\centerdot |B)
P(\centerdot |B)

满足概率的所有性质, 例如:.

P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)
P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)
P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)
P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)
P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)
P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)

(6)若

{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}
{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}

相互独立,则

P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})},
P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})},
P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}
P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}

(7)互斥、互逆与独立性之间的关系:

A
A

B
B

互逆

\Rightarrow
\Rightarrow
A
A

B
B

互斥,但反之不成立,

A
A

B
B

互斥(或互逆)且均非零概率事件

\Rightarrow $$A
\Rightarrow $$A

B
B

不独立. (8)若

{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}
{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}

相互独立,则

f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})
f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})

g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})
g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})

也相互独立,其中

f(\centerdot ),g(\centerdot )
f(\centerdot ),g(\centerdot )

分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义:

F(x) = P(X \leq x), - \infty < x < + \infty
F(x) = P(X \leq x), - \infty < x < + \infty

性质:(1)

0 \leq F(x) \leq 1
0 \leq F(x) \leq 1

(2)

F(x)
F(x)

单调不减

(3) 右连续

F(x + 0) = F(x)
F(x + 0) = F(x)

(4)

F( - \infty) = 0,F( + \infty) = 1
F( - \infty) = 0,F( + \infty) = 1

3.离散型随机变量的概率分布

P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1
P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1

4.连续型随机变量的概率密度

概率密度

f(x)
f(x)

;非负可积,且:

(1)

f(x) \geq 0,
f(x) \geq 0,

(2)

\int_{- \infty}^{+\infty}{f(x){dx} = 1}
\int_{- \infty}^{+\infty}{f(x){dx} = 1}

(3)

x
x

f(x)
f(x)

的连续点,则:

f(x) = F'(x)
f(x) = F'(x)

分布函数

F(x) = \int_{- \infty}^{x}{f(t){dt}}
F(x) = \int_{- \infty}^{x}{f(t){dt}}

5.常见分布

(1) 0-1分布:

P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1
P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1

(2) 二项分布:

B(n,p)
B(n,p)

P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n
P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n

(3) Poisson分布:

p(\lambda)
p(\lambda)

P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots
P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots

(4) 均匀分布

U(a,b)
U(a,b)

f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}
f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}

(5) 正态分布:

N(\mu,\sigma^{2}):
N(\mu,\sigma^{2}):
\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty
\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty

(6)指数分布:

E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}
E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}

(7)几何分布:

G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.
G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.

(8)超几何分布:

H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)
H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)

6.随机变量函数的概率分布

(1)离散型:

P(X = x_{1}) = p_{i},Y = g(X)
P(X = x_{1}) = p_{i},Y = g(X)

则:

P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}
P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}

(2)连续型:

X\tilde{\ }f_{X}(x),Y = g(x)
X\tilde{\ }f_{X}(x),Y = g(x)

则:

F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}
F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}

f_{Y}(y) = F'_{Y}(y)
f_{Y}(y) = F'_{Y}(y)

7.重要公式与结论

(1)

X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2},
X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2},
\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)
\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)

(2)

X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})
X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})

(3)

X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)
X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)

(4)

X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)
X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量

(X,Y)
(X,Y)

, 联合分布为

F(x,y) = P(X \leq x,Y \leq y)
F(x,y) = P(X \leq x,Y \leq y)

2.二维离散型随机变量的分布

(1) 联合概率分布律

P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots
P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots

(2) 边缘分布律

p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots
p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots
p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots
p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots

(3) 条件分布律

P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}}
P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}}
P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}
P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}

3. 二维连续性随机变量的密度

(1) 联合概率密度

f(x,y):
f(x,y):
f(x,y) \geq 0
f(x,y) \geq 0
\int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1
\int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1

(2) 分布函数:

F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}
F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}

(3) 边缘概率密度:

f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}}
f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}}
f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}
f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(4) 条件概率密度:

f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)}
f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)}
f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}
f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}

4.常见二维随机变量的联合分布

(1) 二维均匀分布:

(x,y) \sim U(D)
(x,y) \sim U(D)

,

f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}
f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}

(2) 二维正态分布:

(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

,

(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}
f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}

5.随机变量的独立性和相关性

X
X

Y
Y

的相互独立:

\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right)
\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right)

:

\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}
\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}

(离散型)

\Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)
\Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)

(连续型)

X
X

Y
Y

的相关性:

相关系数

\rho_{{XY}} = 0
\rho_{{XY}} = 0

时,称

X
X

Y
Y

不相关, 否则称

X
X

Y
Y

相关

6.两个随机变量简单函数的概率分布

离散型:

P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right)
P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right)

则:

P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}
P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}

连续型:

\left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)
\left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)

则:

F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}
F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}

f_{z}(z) = F'_{z}(z)
f_{z}(z) = F'_{z}(z)

7.重要公式与结论

(1) 边缘密度公式:

f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,}
f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,}
f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}
f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(2)

P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}
P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}

(3) 若

(X,Y)
(X,Y)

服从二维正态分布

N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

则有:

X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).
X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).
X
X

Y
Y

相互独立

\Leftrightarrow \rho = 0
\Leftrightarrow \rho = 0

,即

X
X

Y
Y

不相关。

C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)
C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)
{\ X}
{\ X}

关于

Y=y
Y=y

的条件分布为:

N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))
N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))
Y
Y

关于

X = x
X = x

的条件分布为:

N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))
N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))

(4) 若

X
X

Y
Y

独立,且分别服从

N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),
N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),

则:

\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),
\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),
C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).
C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).

(5) 若

X
X

Y
Y

相互独立,

f\left( x \right)
f\left( x \right)

g\left( x \right)
g\left( x \right)

为连续函数, 则

f\left( X \right)
f\left( X \right)

g(Y)
g(Y)

也相互独立。

随机变量的数字特征

1.数学期望

离散型:

P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}
P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}

连续型:

X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}
X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}

性质:

(1)

E(C) = C,E\lbrack E(X)\rbrack = E(X)
E(C) = C,E\lbrack E(X)\rbrack = E(X)

(2)

E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)
E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)

(3) 若

X
X

Y
Y

独立,则

E(XY) = E(X)E(Y)
E(XY) = E(X)E(Y)

(4)

\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})
\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})

2.方差

D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}
D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}

3.标准差

\sqrt{D(X)}
\sqrt{D(X)}

4.离散型:

D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}
D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}

5.连续型:

D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx
D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx

性质:

(1)

\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0
\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0

(2)

X
X

Y
Y

相互独立,则

D(X \pm Y) = D(X) + D(Y)
D(X \pm Y) = D(X) + D(Y)

(3)

\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)
\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)

(4) 一般有

D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}
D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}

(5)

\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)
\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)

(6)

\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1
\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1

6.随机变量函数的数学期望

(1) 对于函数

Y = g(x)
Y = g(x)
X
X

为离散型:

P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}
P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}

X
X

为连续型:

X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}
X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}

(2)

Z = g(X,Y)
Z = g(X,Y)

;

\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}
\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}

;

E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}
E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}
\left( X,Y \right)\sim f(x,y)
\left( X,Y \right)\sim f(x,y)

;

E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}
E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}

7.协方差

Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack
Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack

8.相关系数

\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}
\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}

,

k
k

阶原点矩

E(X^{k})
E(X^{k})

;

k
k

阶中心矩

E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}
E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}

性质:

(1)

\ Cov(X,Y) = Cov(Y,X)
\ Cov(X,Y) = Cov(Y,X)

(2)

\ Cov(aX,bY) = abCov(Y,X)
\ Cov(aX,bY) = abCov(Y,X)

(3)

\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)
\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)

(4)

\ \left| \rho\left( X,Y \right) \right| \leq 1
\ \left| \rho\left( X,Y \right) \right| \leq 1

(5)

\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

,其中

a > 0
a > 0
\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

,其中

a < 0
a < 0

9.重要公式与结论

(1)

\ D(X) = E(X^{2}) - E^{2}(X)
\ D(X) = E(X^{2}) - E^{2}(X)

(2)

\ Cov(X,Y) = E(XY) - E(X)E(Y)
\ Cov(X,Y) = E(XY) - E(X)E(Y)

(3)

\left| \rho\left( X,Y \right) \right| \leq 1,
\left| \rho\left( X,Y \right) \right| \leq 1,

\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

,其中

a > 0
a > 0
\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1

,其中

a < 0
a < 0

(4) 下面5个条件互为充要条件:

\rho(X,Y) = 0
\rho(X,Y) = 0
\Leftrightarrow Cov(X,Y) = 0
\Leftrightarrow Cov(X,Y) = 0
\Leftrightarrow E(X,Y) = E(X)E(Y)
\Leftrightarrow E(X,Y) = E(X)E(Y)
\Leftrightarrow D(X + Y) = D(X) + D(Y)
\Leftrightarrow D(X + Y) = D(X) + D(Y)
\Leftrightarrow D(X - Y) = D(X) + D(Y)
\Leftrightarrow D(X - Y) = D(X) + D(Y)

注:

X
X

Y
Y

独立为上述5个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用

X
X

表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体

X
X

n
n

个相互独立且与总体同分布的随机变量

X_{1},X_{2}\cdots,X_{n}
X_{1},X_{2}\cdots,X_{n}

,称为容量为

n
n

的简单随机样本,简称样本。

统计量:设

X_{1},X_{2}\cdots,X_{n},
X_{1},X_{2}\cdots,X_{n},

是来自总体

X
X

的一个样本,

g(X_{1},X_{2}\cdots,X_{n})
g(X_{1},X_{2}\cdots,X_{n})

)是样本的连续函数,且

g()
g()

中不含任何未知参数,则称

g(X_{1},X_{2}\cdots,X_{n})
g(X_{1},X_{2}\cdots,X_{n})

为统计量。

样本均值:

\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}
\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}

样本方差:

S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}
S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}

样本矩:样本

k
k

阶原点矩:

A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots
A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots

样本

k
k

阶中心矩:

B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots
B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots

2.分布

\chi^{2}
\chi^{2}

分布:

\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)
\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)

,其中

X_{1},X_{2}\cdots,X_{n},
X_{1},X_{2}\cdots,X_{n},

相互独立,且同服从

N(0,1)
N(0,1)
t
t

分布:

T = \frac{X}{\sqrt{Y/n}}\sim t(n)
T = \frac{X}{\sqrt{Y/n}}\sim t(n)

,其中

X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),
X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),

X
X

Y
Y

相互独立。

F
F

分布:

F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})
F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})

,其中

X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),
X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),

X
X

Y
Y

相互独立。

分位数:若

P(X \leq x_{\alpha}) = \alpha,
P(X \leq x_{\alpha}) = \alpha,

则称

x_{\alpha}
x_{\alpha}

X
X

\alpha
\alpha

分位数

3.正态总体的常用样本分布

(1) 设

X_{1},X_{2}\cdots,X_{n}
X_{1},X_{2}\cdots,X_{n}

为来自正态总体

N(\mu,\sigma^{2})
N(\mu,\sigma^{2})

的样本,

\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}
\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}

则:

\overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }
\overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }

或者

\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)
\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)
\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}
\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}
\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}
\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}

4)

{\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)
{\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)

4.重要公式与结论

(1) 对于

\chi^{2}\sim\chi^{2}(n)
\chi^{2}\sim\chi^{2}(n)

,有

E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;
E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;

(2) 对于

T\sim t(n)
T\sim t(n)

,有

E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)
E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)

(3) 对于

F\tilde{\ }F(m,n)
F\tilde{\ }F(m,n)

,有

\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};
\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};

(4) 对于任意总体

X
X

,有

E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}
E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}

原文:http://www.ai-start.com/dl2017/html/math.html

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019.05.29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 高等数学
  • 线性代数
    • 行列式
      • 矩阵
        • 向量
          • 线性方程组
            • 矩阵的特征值和特征向量
              • 二次型
              • 概率论和数理统计
                • 随机事件和概率
                  • 随机变量及其概率分布
                    • 多维随机变量及其分布
                      • 随机变量的数字特征
                        • 数理统计的基本概念
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档