数据库大批量 SQL 插入性能优化

01 一条SQL语句插入多条数据

常用的插入语句如下:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);

修改成:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1);

修改后的插入操作能够提高程序的插入效率。这里第二种 SQL 执行效率高的主要原因是合并后日志量(MySQL 的binlog 和 innodb 的事务让日志)减少了,降低日志刷盘的数据量和频率,从而提高效率

通过合并 SQL 语句,同时也能减少 SQL 语句解析的次数,减少网络传输的 IO。

这里提供一些测试对比数据,分别是进行单条数据的导入与转化成一条 SQL 语句进行导入,分别测试 1 百、1 千、1 万条数据记录。

02 在事务中进行插入处理

把插入语句修改成:

START TRANSACTION;
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);...COMMIT;

使用事务可以提高数据的插入效率,这是因为进行一个 INSERT 操作时,MySQL 内部会建立一个事务,在事务内才进行真正插入处理操作。通过使用事务可以减少创建事务的消耗,所有插入都在执行后才进行提交操作。

这里也提供了测试对比,分别是不使用事务与使用事务在记录数为 1 百、1 千、1 万的情况。

03 数据有序插入

数据有序的插入是指插入记录在主键上是有序排列,例如 datetime 是记录的主键:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('2', 'userid_2', 'content_2',2);

修改成:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('1', 'userid_1', 'content_1', 1);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('2', 'userid_2', 'content_2',2);

由于数据库插入时,需要维护索引数据,无序的记录会增大维护索引的成本。

我们可以参照 InnoDB 使用的 B+tree 索引,如果每次插入记录都在索引的最后面,索引的定位效率很高,并且对索引调整较小;如果插入的记录在索引中间,需要 B+tree 进行分裂合并等处理,会消耗比较多计算资源,并且插入记录的索引定位效率会下降,数据量较大时会有频繁的磁盘操作。

下面提供随机数据与顺序数据的性能对比,分别是记录为 1 百、1 千、1 万、10 万、100 万。

从测试结果来看,该优化方法的性能有所提高,但是提高并不是很明显。

04 性能综合测试

这里提供了同时使用上面三种方法进行 INSERT 效率优化的测试。

从测试结果可以看到,合并数据+事务的方法在较小数据量时,性能提高是很明显的,数据量较大时(1 千万以上),性能会急剧下降,这是由于此时数据量超过了 innodb_buffer 的容量,每次定位索引涉及较多的磁盘读写操作,性能下降较快。而使用合并数据+事务+有序数据的方式在数据量达到千万级以上表现依旧是良好,在数据量较大时,有序数据索引定位较为方便,不需要频繁对磁盘进行读写操作,所以可以维持较高的性能

注意事项:

  1. SQL语句是有长度限制,在进行数据合并在同一 SQL 中务必不能超过 SQL 长度限制,通过maxallowedpacket 配置可以修改,默认是 1 M,测试时修改为 8 M。
  2. 事务需要控制大小,事务太大可能会影响执行的效率。MySQL 有 innodblogbuffer_size 配置项,超过这个值会把 Innodb 的数据刷到磁盘中,这时,效率会有所下降。所以比较好的做法是,在数据达到这个这个值前进行事务提交。

原文发布于微信公众号 - 程序猿杂货铺(zhoudl_l)

原文发表时间:2019-03-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券