【综述】生成式对抗网络GAN最新进展综述

【导读】这几年来,生成式对抗网络引起了学术界的高度重视,本文为大家带来了一份最新的GAN综述,带大家快速浏览这一方向的研究进展。

介绍:

近些年来,生成式对抗网络(GANs)在机器学习领域,得到了广泛的研究,可以说是计算机领域革命性的技术成果,具有广泛的应用价值(如图像生成、图像转换、面部属性操作等)。尽管在计算机视觉领域得到了显著成功,但将GAN应用于实际问题,仍然存在着三个主要挑战:(1)高质量图像生成;(2)多样化的图像生成;(3)稳定的训练效果。考虑到文献中的大量GAN相关研究,我们提供了一个此方向的研究系统分类,从两个方向来论述了以上三个挑战。在本文中,我们回顾了7中架构及8中损失函数,并进行了相关性能分析。

相关代码地址: https://github.com/sheqi/GAN_Review

生成式对抗网络研究主要关注于两个方向:(1)提升GAN的训练效果;(2)将GAN应用于现实应用。第一个研究方向旨在提高GAN的模型性能,通过文中多种研究工作,我们提供了一份简短的介绍,来描述GAN以及其变体的相关进展其对性能的提升可以被总结为几个方面:(1)生成图像的多样性;(2)生成图像的质量;(3)稳定的训练过程。为了达到以上的提升效果,我们需要从两个方向进行改变:模型架构与loss函数。本文将从两个方向着手,分别对GAN家族中的相关模型进行系统分类。

本文组织:

  1. 介绍研究策略和结论
  2. 介绍相关综述工作
  3. 给出简短的GAN介绍
  4. 回顾GAN架构的变体
  5. 回顾损失函数的变体
  6. 总结GAN变体间的差异与关联
  7. 总结当前研究及展望未来发展前景

请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“GANR2019” 就可以获取《生成式对抗网络综述》完整版论文下载链接~

附全文预览:

-END-

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2019-06-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券