前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Prophesee:基于帧的传感器到基于事件的视觉系统

Prophesee:基于帧的传感器到基于事件的视觉系统

作者头像
AiTechYun
发布2019-06-18 17:00:40
1.5K0
发布2019-06-18 17:00:40
举报
文章被收录于专栏:ATYUN订阅号

编译 | Aaron

发布 | ATYUN订阅号

基于事件的视觉功能,如眼睛和大脑,以克服传统机器视觉的固有限制。人眼与传统摄像机几乎没有什么共同之处。

所有传统视频工具都通过每秒捕获一些静止帧来表示动作。这些图像快速显示,产生连续运动的错觉。从翻书到电影摄影机,错觉变得更有说服力,但它的基本结构从未改变过。

对于计算机来说,这种运动表示方法几乎没用。相机在每个帧之间是盲目的,丢失有关移动物体的信息。即使在相机正在拍摄时,其每个快照图像也不包含有关场景中元素运动的信息。更糟糕的是,在每个图像中,重复记录相同的不相关背景对象,从而产生过多的无用数据。

考虑一个挥杆的高尔夫球手的视频。传统传感器将任意帧速率应用于整个场景,比如说每秒30帧。重要的信息是球杆的摆动和球的运动,但具有讽刺意味的是,传感器将错过这些信息的一部分,同时反复对作为背景的天空,树木和草进行大量清查。

简洁的解决方案

Evolution开发了一种简洁的解决方案,使自然视觉永远不会遇到这些问题。它不需要帧。当你眼睛里的细胞检测到一个事件场景的变化时,它们会向大脑报告。如果没有任何变化,则单元格不会报告任何内容。一个物体移动得越多,你的眼睛和大脑对它的感知就越多。

该过程允许人类视觉收集它所需的所有信息,而不会浪费时间和能量来重新处理场景中不变的图像。

仅通过记录变化,眼睛和大脑可以从每秒变化高达1000次的事物中收集有用的信息,而不需要使用大量的脑力。这是基于事件的视觉独立受体,收集所有的基本信息,而不是其他无关内容。

基于事件的视觉系统感知场景的生命力

PROPHESEE创建了神经形态传感器和生物启发算法,其功能类似于眼睛和大脑。这种整体方法是计算机视觉的根本转变——从基于帧的传感器到基于事件的视觉系统的转变。

每个像素仅在感知到移动时报告。而在基于帧的传感器中,所有像素同时记录,在基于事件的传感器中,每个像素完全独立。

当每个像素仅在触发时可以自由记录时,所创建的信息不会逐帧到达。相反,移动被捕获为连续的信息流。帧之间没有任何损失。

基于事件的视觉系统产生的数据比传统传感器少1000倍,同时达到了更高的等效时间分辨率,每秒大于10000帧。基于事件的视觉绕过了传统计算机视觉固有的局限性,正在颠覆汽车、深度学习、工业自动化、物联网、安全、监控和医疗等领域。

End

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 ATYUN订阅号 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简洁的解决方案
  • 基于事件的视觉系统感知场景的生命力
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档