前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >DBSCAN聚类教程:DBSCAN算法原理以及Python实现

DBSCAN聚类教程:DBSCAN算法原理以及Python实现

作者头像
深度学习与Python
发布2019-06-18 20:54:10
6.5K0
发布2019-06-18 20:54:10
举报

聚类算法是无监督学习中的重要部分,聚类算法包括K-means、k-mediods以及DBSCAN等。DBSCAN是基于距离测量(通常为欧几里德距离)和最小点数将彼此接近的点组合在一起。DBSCAN算法可以用来查找难以手动查找的数据中的关联和结构,通常用于生物学,医学,人物识别,管理系统等多个领域。

算法原理

DBSCAN聚类的过程像树生长一样,它从种子点开始,该种子点在eps的距离内至少具有MinPoints个点。我们沿着这些附近的点进行广度优先搜索。对于给定的点,我们检查它在半径内有多少个点。如果它的数量少于MinPoints,则此点变为叶子,我们不会继续从中增长群集。我们将其所有邻居添加到我们广度优先搜索的FIFO队列中。一旦广度优先搜索完成,我们就完成了该集群,我们永远不会重新计算其中的任何一点。我们选择一个新的任意种子点,并增长下一个集群。一直持续到所有点都已分配。DBSCAN还有一个新颖的地方,如果一个点的邻居数少于MinPoints,并且它不是另一个集群的叶节点,则它被标记为不属于任何集群的“噪声”点。噪声点被识别为选择新种子的过程的一部分 - 如果特定种子点没有足够的邻居,则将其标记为噪声点。

两个参数:eps和minpoints

DBSCAN算法主要有2个参数:

eps:两点之间的最小距离。这意味着如果两点之间的距离低于或等于该值(eps),则这些点被认为是相邻。如果选择的eps值太小,则很大一部分数据不会聚集。它将被视为异常值,因为不满足创建密集区域的点数。如果选择的值太大,则群集会被合并,这样会造成大多数对象处于同一群集中。因此应该根据数据集的距离来选择eps,一般来说eps值尽量取小一点。

minPoints:表示形成密集区域的最小点数。例如,如果我们将minPoints参数设置为5,那么我们需要至少5个点来形成密集区域。作为一般规则,minPoints可以从数据集中的多个维度(D)导出,因为minPoints≥D+ 1.对于具有噪声的数据集,较大的minPoints值通常更好,并且将形成更完美的簇。minPoints的最小值必须为3,数据集越大,对应选择的minPoints值越大。

区别于K-means

DBSCAN与K-means不同的是

  • 在k-means聚类中,每个聚类由质心表示,并且点被分配给最接近的质心。在DBSCAN中,没有质心,通过将附近的点彼此链接来形成簇。
  • k-means需要指定簇的数量k。DBSCAN中不需要,DBSCAN需要指定两个参数来决定两个附近点是否应该链接到同一个集群。这两个参数是距离阈值eps和MinPoints。
  • k-means运行多次迭代以汇聚到一组良好的集群上,并且集群分配可以在每次迭代时发生变化。DBSCAN只对数据进行一次传递,一旦将某个点分配给特定的群集,它就不会发生变化。

Python实现

下面通过Python代码实现来帮助大家更好地理解DBSCAN的算法原理,实现的重点在于说明算法,例如距离的优化计算。详细代码可以参见Github。

Github

https://github.com/chrisjmccormick/dbscan

DBSCAN代码实现如下:

import numpy

def MyDBSCAN(D, eps, MinPts):
    """
    Cluster the dataset `D` using the DBSCAN algorithm.

    MyDBSCAN takes a dataset `D` (a list of vectors), a threshold distance
    `eps`, and a required number of points `MinPts`.

    It will return a list of cluster labels. The label -1 means noise, and then
    the clusters are numbered starting from 1.
    """

    # This list will hold the final cluster assignment for each point in D.
    # There are two reserved values:
    #    -1 - Indicates a noise point
    #     0 - Means the point hasn't been considered yet.
    # Initially all labels are 0.    
    labels = [0]*len(D)

    # C is the ID of the current cluster.    
    C = 0

    # This outer loop is just responsible for picking new seed points--a point
    # from which to grow a new cluster.
    # Once a valid seed point is found, a new cluster is created, and the 
    # cluster growth is all handled by the 'expandCluster' routine.
    # For each point P in the Dataset D...
    # ('P' is the index of the datapoint, rather than the datapoint itself.)
    for P in range(0, len(D)):

        # Only points that have not already been claimed can be picked as new 
        # seed points.    
        # If the point's label is not 0, continue to the next point.
        if not (labels[P] == 0):
           continue

        # Find all of P's neighboring points.
        NeighborPts = regionQuery(D, P, eps)

        # If the number is below MinPts, this point is noise. 
        # This is the only condition under which a point is labeled 
        # NOISE--when it's not a valid seed point. A NOISE point may later 
        # be picked up by another cluster as a boundary point (this is the only
        # condition under which a cluster label can change--from NOISE to 
        # something else).
        if len(NeighborPts) < MinPts:
            labels[P] = -1
        # Otherwise, if there are at least MinPts nearby, use this point as the 
        # seed for a new cluster.    
        else: 
           # Get the next cluster label.
           C += 1

           # Assing the label to our seed point.
           labels[P] = C

           # Grow the cluster from the seed point.
           growCluster(D, labels, P, C, eps, MinPts)

    # All data has been clustered!
    return labels


def growCluster(D, labels, P, C, eps, MinPts):
    """
    Grow a new cluster with label `C` from the seed point `P`.

    This function searches through the dataset to find all points that belong
    to this new cluster. When this function returns, cluster `C` is complete.

    Parameters:
      `D`      - The dataset (a list of vectors)
      `labels` - List storing the cluster labels for all dataset points
      `P`      - Index of the seed point for this new cluster
      `C`      - The label for this new cluster.  
      `eps`    - Threshold distance
      `MinPts` - Minimum required number of neighbors
    """
    SearchQueue = [P]

    # For each point in the queue:
    #   1. Determine whether it is a branch or a leaf
    #   2. For branch points, add their unclaimed neighbors to the search queue
    i = 0
    while i < len(SearchQueue):    

        # Get the next point from the queue.        
        P = SearchQueue[i]
        # Find all the neighbors of P
        NeighborPts = regionQuery(D, P, eps)

        # If the number of neighbors is below the minimum, then this is a leaf
        # point and we move to the next point in the queue.
        if len(NeighborPts) < MinPts:
            i += 1
            continue

        # Otherwise, we have the minimum number of neighbors, and this is a 
        # branch point.

        # For each of the neighbors...
        for Pn in NeighborPts:

            # If Pn was labelled NOISE during the seed search, then we
            # know it's not a branch point (it doesn't have enough 
            # neighbors), so make it a leaf point of cluster C and move on.
            if labels[Pn] == -1:
               labels[Pn] = C
            # Otherwise, if Pn isn't already claimed, claim it as part of
            # C and add it to the search queue.   
            elif labels[Pn] == 0:
                # Add Pn to cluster C.
                labels[Pn] = C

                # Add Pn to the SearchQueue.
                SearchQueue.append(Pn)

        # Advance to the next point in the FIFO queue.
        i += 1        

    # We've finished growing cluster C!

def regionQuery(D, P, eps):
    """
    Find all points in dataset `D` within distance `eps` of point `P`.

    This function calculates the distance between a point P and every other 
    point in the dataset, and then returns only those points which are within a
    threshold distance `eps`.
    """
    neighbors = []

    # For each point in the dataset...
    for Pn in range(0, len(D)):

        # If the distance is below the threshold, add it to the neighbors list.
        if numpy.linalg.norm(D[P] - D[Pn]) < eps:
           neighbors.append(Pn)

    return neighbors
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-05-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 深度学习与python 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档