专栏首页深度学习与python人工智能的非技术使用说明书

人工智能的非技术使用说明书

据麦肯锡估计,从现在到2030年,人工智能将创造约13万亿美元的美国国内生产总值。相比之下,2017年整个美国的国内生产总值约为19万亿。人工智能已经成为第四次工业革命, 人工智能无疑是数字化转型的核心,它在整个行业中的应用将极大地改变我们的世界以及工业生产方式。 越来越多的人希望投入这场人工智能革命,但他们不知道AI能做什么,AI是一种什么样的技术。 因此本文将介绍什么是AI。

关于人工智能的误解

关于人工智能的炒作从未停止过,许多人对人工智能存在一定的误解。人工智能可分为两部分:

人工窄智能(ANI)

人工窄智能是指擅长一项特定任务的AI ,它们是经过训练和开发的。 例如一个人工智能系统可根据历史数据向您推荐YouTube视频的算法或者预测未来房屋价格。ANI是一个非常强大的工具,它将在未来几年为我们的社会增加许多额外的价值。 我们近年来所看到的所有人工智能进展其实都是人工窄智能。

人工智能(AGI)

人工智能的最终目标是一个比人类聪明或聪明的计算机系统 。 AGI可以成功地完成人类可以做的任何智力任务。 这也是AI引起人们最大恐惧的一部分。 他们想象一个计算机比人类聪明得多的世界,几乎每个工作都是自动化的,甚至是类似终结者的场景。而实际上, 我们仍远远未达到真正的AGI技术水平 。

人工智能相关术语

人工智能是一个非常复杂的领域,里面包括很多术语可能会让你很混乱。 你可能听说过神经网络,深度学习或数据科学。 但并不清楚其中具体的含义以及相互间的关系。

人工智能

人工智能是一个计算机科学领域 ,它强调智能机器的创造,拥有像人类一样工作和反应 。 就像我已经提到的那样,当人们谈论AI时,他们主要是人工智能(AGI)。机器学习和深度学习都是用于使计算机智能操作的技术。

机器学习

机器学习是AI的一个子领域 。 通过一定的算法使计算机能够从数据中学习并执行某项任务。 机器学习项目示例:

想象一下,你是一家房地产公司,你有很多关于房屋的数据。 您与机器学习公司合作,建立机器学习系统,以预测房屋的未来价格。 这样的系统使您能够更好地决定您想要投资的房屋,并找出清算投资的合适时机。

深度学习

深度学习是机器学习的一个子部分,它与机器学习基本相同:你给算法标记数据,然后算法从数据中学习数据规律并进行预测。 与机器学习的不同之处在于深度学习具有更现代,更复杂的算法,而机器学习使用更简单的传统算法。由于它们的复杂性以及足够的数据和计算能力,深度学习算法在准确度上有了重大突破,甚至在其中一些任务上超过人类(例如:组织病理学图像分析,或在Netflix上推荐电影)。

数据科学

数据科学项目的输出通常是一组见解,可帮助您做出更好的业务决策,例如决定是否投资某些东西,是否应该购买某些设备,或者是否应重新构建您的网站。 数据科学是通过统计方法 ,可视化等分析数据来提取数据知识和洞察力的科学 。输出通常是演示文稿或幻灯片帮助管理者做出某些决策的结论。

人工智能术语还包括强化学习,生成性对抗网络(Gans)等。这些都是使AI系统智能化的工具。

数据

数据可以采用多种形式:电子表格,图像,音频,传感器数据等。这些可分为两大类:结构化和非结构化数据。

结构化数据是按照预定义模式以结构化格式存储的数据 。 它指的是驻留在记录或文件中的固定字段中的任何数据。可以是文本的也可以是非文本。 例如泰坦尼克号数据集就是一种结构化数据。

非结构化数据本质上是未通过预定义模式构建的其他所有内容。 它可以是文本的或非文本的, 主要包括图像,视频,音频文件,文档等。

监督学习是最常用的机器学习类型,当人们说“数据”时,它们主要是指标记数据 。例如您有一个数据集,其中包含100,000只狗和猫的照片,其中每张照片都有一个标签,“Cat”或“Dog”。还比如一个包含房价信息的数据集。 每个房屋对应的价格就是标签。

数据获取

您可以在互联网上找到许多问题的数据集(一些是免费的,一些是花钱的),但大多数时候您需要创建自己的数据集,获取数据有三种主要方式:

1.手动创建

假如你想要建立一个分类器检测给定图片上是否有男人或女人。 要训练这样的分类器,你需要搜集一些男女图片。 然后,您需要为每个图像指定一个标签:men(标签1)或女人(标签2)。

2.用户行为

假如您经营一家电子商务公司并希望预测客户何时会进行购买,您可以通过观察用户在您网站上的行为来创建数据集。

3.使用免费数据源

像Kaggle上有许多免费的数据集资源。 还可以使用Google数据搜索 ,如果没有找到任何内容,还可以在数据市场上购买数据集。

参考

https://towardsdatascience.com/the-non-technical-guide-to-artificial-intelligence-e9e5da1a15c5

深度学习与Python,专注于深度学习、机器学习前沿知识与资讯

本文分享自微信公众号 - 深度学习与python(PythonDC),作者:Python语音识别

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-06-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 2020年十个最好用的大数据分析工具

    营销的基本原理是一致的,每个人都喜欢洞察力,因为这些数字模式可以提供最安全的方法来确保企业采取正确的行动,更有效地运作,以及将其资源用在何处。数据已经成了战略的...

    深度学习与Python
  • 从业多年,总结几点关于机器学习的经验教训

    纯机器学习(ML)模型的训练与建立端到端的数据科学解决方案与实际企业需要之间存在巨大差异。 本文总结了我们团队与来自不同行业的数十家企业客户(包括制造业,金融服...

    深度学习与Python
  • Google大脑工程师:通用人工智能啥时候能实现?这是我的预测

    在本文中,我将使用“通用人工智能”(Artificial General Intelligence,AGI)一词,表示为在几乎所有(95% +)有经济价值的工作...

    深度学习与Python
  • 数据科学、人工智能与机器学习傻傻分不清楚,看这篇就够了

    尽管"数据科学"、人工智能 (AI) 和机器学习属于同一领域,彼此相互联系,但是它们也有特定的应用背景和意义。它们有时也会有重叠,但基本上它们都有自己的特定的用...

    deephub
  • 数据科学,机器学习和人工智能有什么区别?

    当我介绍自己时,经常会被人问到诸如“机器学习和xx有何区别?”或“你在使用人工智能吗?”等问题。类似问题我已经回复了很多次,按照我的"3原则”我决定写一篇博文:...

    小莹莹
  • 大数据AND机器学习:大数据是原材料,机器学习是原材料加工厂

    导 读 大数据是原材料,机器学习是原材料加工厂,而新一代人工智能服务则是工厂出炉的产品被消费在越来越多的日常生活中。 在Deepmind和AlphaGo获得的...

    CDA数据分析师
  • 谷歌向全球AI初创企业“输血”;高德和百座城市共建智慧交通 | DT数读

    过去一周,国际、国内的大数据相关公司都有哪些值得关注的新闻?数据行业都有哪些新观点和新鲜事?DT君为你盘点解读。

    DT数据侠
  • 政策研究:盘点政府推动大数据应用及发展的举措

    (一)政府掌握大量最具应用价值的核心数据,是推动大数据应用的最关键力量 根据麦肯锡大数据研究报告指出,各个行业利用大数据价值的难易度以及发展潜力。对比下,政府...

    灯塔大数据
  • 「数据饥荒」之后,人工智能的未来在哪里?

    联邦学习是一种新兴的人工智能基础技术, 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、...

    数据猿
  • 院士梅宏:真正的大数据应用体现在数据挖掘的深度

    大数据文摘

扫码关注云+社区

领取腾讯云代金券