机器之心报道
参与:李亚洲、杜伟
昨日,中国香港中文大学多媒体实验室(MMLab)OpenMMLab 发布动作识别和检测库 MMAction,同时也对去年发布的目标检测工具箱 mmdetection 进行了升级,提供了一大批新的算法实现。
OpenMMLab 计划是中国香港中文大学多媒体实验室(MMLab)2018 年启动的计划,由中国香港中文大学教授、商汤科技联合创始人林达华老师负责,初衷是「为计算机视觉的一些重要方向建立统一而开放的代码库,并不断把新的算法沉淀其中。」
2018 年 10 月,在 OpenMMLab 的首期计划中,商汤和港中文正式开源了 mmdetection,这是一个基于 PyTorch 的开源目标检测工具包。该工具包支持 Mask RCNN 等多种流行的检测框架,读者可在 PyTorch 环境下测试不同的预训练模型及训练新的检测分割模型。
昨日,林达华发表知乎文章,发布 OpenMMLab 第二期内容:
MMDetection 1.0
Github 地址:open-mmlab/mmdetectiongithub.com
最新的 MMDetection 是 MMLab 联合商汤科技以及十多个研究团队合作完成的。据介绍,相较于其他开源数据库,MMDetection 1.0 的优势如下:
此外,MMLab 也发布了一份技术报告,对 MMDetection 进行了详细介绍。
从机构名称中,我们可以发现 MMDetection 的发布联合了国内外 13 所机构。
报告链接:https://arxiv.org/abs/1901.11356
该报告还提供了 MMDetection 与其他开源库的对比,可以看到 MMDetection 提供的算法远比其他开源库丰富:
MMDetection 与其他开源库的对比
MMLab 的研究团队还在 MMDetection 的基础上对相关算法进行了全方位的对比试验。他们比较了损失函数、归一化策略、训练尺度等一系列设计参数的选择对于检测性能的影响。
视频动作分析库 MMAction
林达华介绍道,「在深度学习刚刚开始进入计算机视觉领域的时候,MMLab 已经开始了对使用深度学习进行视频动作分析的研究,提出了一系列有影响的算法框架。比如,我们在 ECCV 2016 提出的时序分段网络(Temporal Segmental Network)已经被广泛运用于实际系统中,并影响了很多新的算法设计。」
基于过去几年的探索,MMLab 建立了专门用于视频动作分析的统一代码库 MMAction。
项目地址:https://github.com/open-mmlab/mmaction
据介绍,MMAction 有以下重要优点:
林达华知乎文章:https://zhuanlan.zhihu.com/p/69830582
本文为机器之心报道,转载请联系本公众号获得授权。
✄------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com