前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习的树木覆盖预测

深度学习的树木覆盖预测

作者头像
代码医生工作室
发布2019-06-24 09:48:47
9140
发布2019-06-24 09:48:47
举报
文章被收录于专栏:相约机器人

作者 | Daniel Moraite

来源 | Medium

编辑 | 代码医生团队

今天将尝试一个关于树覆盖预测的演示,其中展示了使用eo-learn进行机器学习/深度学习是多么容易。将训练U-net深度学习网络来预测树木覆盖。

在英国(伦敦西北部)选择了超过600平方英里的面积。Geopedia的欧盟树木覆盖密度已被用于收集地面实况数据。

建立

代码语言:javascript
复制
- install Sentinel Hub 
- install eo-learn
- install keras and tensorflow

(请在文章末尾找到资源的链接)

数据提取

在之前找到如何获得感兴趣的区域AOI坐标的详细信息:使用Python发布的卫星图像分析。确保将坐标保存在工作目录中的file.geojson中,或者如果已复制github repo:../ eo-learn-master/example_data/。

https://danielmoraite.github.io/docs/satellite1.html

全局图像请求参数

代码语言:javascript
复制
time_interval = ('2019-01-01', '2019-05-26')
img_width = 240
img_height = 256
maxcc = 0.2

得到AOI并拆分成bbox

代码语言:javascript
复制
crs = CRS.UTM_31N
aoi = geopandas.read_file('../../example_data/europe.geojson')
aoi = aoi.to_crs(crs={'init':CRS.ogc_string(crs)})
aoi_shape = aoi.geometry.values.tolist()[-1]
bbox_splitter = BBoxSplitter([aoi_shape], crs, (19, 10))

为Geopedia任务设置raster_value转换,请在此处详细了解如何执行此操作:

代码语言:javascript
复制
raster_value = {
    '0%': (0, [0, 0, 0, 0]),
    '10%': (1, [163, 235,  153, 255]),
    '30%': (2, [119, 195,  118, 255]),
    '50%': (3, [85, 160, 89, 255]),
    '70%': (4, [58, 130, 64, 255]),
    '90%': (5, [36, 103, 44, 255])
}
import matplotlib as mpl
tree_cmap = mpl.colors.ListedColormap(['#F0F0F0', 
                                       '#A2EB9B', 
                                       '#77C277', 
                                       '#539F5B', 
                                       '#388141', 
                                       '#226528'])
tree_cmap.set_over('white')
tree_cmap.set_under('white')
bounds = np.arange(-0.5, 6, 1).tolist()
tree_norm = mpl.colors.BoundaryNorm(bounds, tree_cmap.N)

创建用于计算中值像素值的任务

代码语言:javascript
复制
class MedianPixel(EOTask):
    """
    The task returns a pixelwise median value from a time-series and stores the results in a 
    timeless data array.
    """
    def __init__(self, feature, feature_out):
        self.feature_type, self.feature_name = next(self._parse_features(feature)())
        self.feature_type_out, self.feature_name_out = next(self._parse_features(feature_out)())
    def execute(self, eopatch):
        eopatch.add_feature(self.feature_type_out, self.feature_name_out, 
                            np.median(eopatch[self.feature_type][self.feature_name], axis=0))
        return eopatch

初始化任务任务以获得S2 L2A图像

代码语言:javascript
复制
input_task = S2L2AWCSInput('TRUE-COLOR-S2-L2A', resx='10m', resy='10m', maxcc=0.2)

从Geopedia获得真相的任务

代码语言:javascript
复制
geopedia_data = AddGeopediaFeature((FeatureType.MASK_TIMELESS, 'TREE_COVER'), 
                               layer='ttl2275', theme='QP', raster_value=raster_value)

计算中值的任务

代码语言:javascript
复制
get_median_pixel = MedianPixel((FeatureType.DATA, 'TRUE-COLOR-S2-L2A'), 
                           feature_out=(FeatureType.DATA_TIMELESS, 'MEDIAN_PIXEL'))

保存到磁盘的任务

代码语言:javascript
复制
save = SaveToDisk(op.join('data', 'eopatch'), 
              overwrite_permission=OverwritePermission.OVERWRITE_PATCH, 
              compress_level=2)

初始化工作流程

代码语言:javascript
复制
workflow = LinearWorkflow(input_task, geopedia_data, get_median_pixel, save)

使用函数在单个bbox上运行此工作流

代码语言:javascript
复制
def execute_workflow(index):
    bbox = bbox_splitter.bbox_list[index]
    info = bbox_splitter.info_list[index]
    patch_name = 'eopatch_{0}_row-{1}_col-{2}'.format(index, 
                                                      info['index_x'], 
                                                      info['index_y'])
    results = workflow.execute({input_task:{'bbox':bbox, 'time_interval':time_interval},
                                save:{'eopatch_folder':patch_name}
                               })
    return list(results.values())[-1]
    del results

1.测试示例补丁和显示的工作流程

代码语言:javascript
复制
idx = 168  # feel free to check other idx`s 
example_patch = execute_workflow(idx)  
example_patch
 
EOPatch(
  data: {
    TRUE-COLOR-S2-L2A: numpy.ndarray(shape=(3, 427, 240, 3), dtype=float32)
  }
  mask: {
    IS_DATA: numpy.ndarray(shape=(3, 427, 240, 1), dtype=bool)
  }
  scalar: {}
  label: {}
  vector: {}
  data_timeless: {
    MEDIAN_PIXEL: numpy.ndarray(shape=(427, 240, 3), dtype=float32)
  }
  mask_timeless: {
    TREE_COVER: numpy.ndarray(shape=(427, 240, 1), dtype=uint8)
  }
  scalar_timeless: {}
  label_timeless: {}
  vector_timeless: {}
  meta_info: {
    maxcc: 0.2
    service_type: 'wcs'
    size_x: '10m'
    size_y: '10m'
    time_difference: datetime.timedelta(-1, 86399)
    time_interval: ('2019-01-01', '2019-05-26')
  }
  bbox: BBox(((247844.22638276426, 5741388.945588876), (250246.2123813057, 5745654.985149694)), crs=EPSG:32631)
  timestamp: [datetime.datetime(2019, 1, 17, 11, 16, 48), ..., datetime.datetime(2019, 2, 26, 11, 22, 1)], length=3
)
 
mp = example_patch.data_timeless['MEDIAN_PIXEL']
plt.figure(figsize=(15,15))
plt.imshow(2.5*mp)
tc = example_patch.mask_timeless['TREE_COVER']
plt.imshow(tc[...,0], vmin=0, vmax=5, alpha=.5, cmap=tree_cmap)
plt.colorbar()

2.在所有修补程序上运行工作流

运行多个bbox

代码语言:javascript
复制
subset_idx = len(bbox_splitter.bbox_list)
x_train_raw = np.empty((subset_idx, img_height, img_width, 3))
y_train_raw = np.empty((subset_idx, img_height, img_width, 1))
pbar = tqdm(total=subset_idx)
for idx in range(0, subset_idx):
    patch = execute_workflow(idx)
    x_train_raw[idx] = patch.data_timeless['MEDIAN_PIXEL'][20:276,0:240,:]
    y_train_raw[idx] = patch.mask_timeless['TREE_COVER'][20:276,0:240,:]
    pbar.update(1)

3.创建训练和验证数据阵列

数据规范化和扩充

代码语言:javascript
复制
img_mean = np.mean(x_train_raw, axis=(0, 1, 2))
img_std = np.std(x_train_raw, axis=(0, 1, 2))
x_train_mean = x_train_raw - img_mean
x_train = x_train_mean - img_std
train_gen = ImageDataGenerator(
    horizontal_flip=True,
    vertical_flip=True,
    rotation_range=180)
y_train = to_categorical(y_train_raw, len(raster_value))

4.使用Keras(tensorflow后端)设置U-net模型

通过keras2权重称量边界像素损失脚本的模型设置:加权张量(与掩模图像相同的形状)

代码语言:javascript
复制
def weighted_bce_loss(y_true, y_pred, weight):
    # avoiding overflow
    epsilon = 1e-7
    y_pred = K.clip(y_pred, epsilon, 1. - epsilon)
    logit_y_pred = K.log(y_pred / (1. - y_pred))

check:weighted_cross_entropy_with_logits

https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits

代码语言:javascript
复制
loss = (1. - y_true) * logit_y_pred + (1. + (weight - 1.) * y_true) * \
(K.log(1. + K.exp(-K.abs(logit_y_pred))) + K.maximum(-logit_y_pred, 0.))
return K.sum(loss) / K.sum(weight)
 
def weighted_dice_loss(y_true, y_pred, weight):
    smooth = 1.
    w, m1, m2 = weight * weight, y_true, y_pred
    intersection = (m1 * m2)
    score = (2. * K.sum(w * intersection) + smooth) / (K.sum(w * m1) + K.sum(w * m2) + smooth)
    loss = 1. - K.sum(score)
    return loss
 
def weighted_bce_dice_loss(y_true, y_pred):
    y_true = K.cast(y_true, 'float32')
    y_pred = K.cast(y_pred, 'float32')
    # if we want to get same size of output, kernel size must be odd number
    averaged_mask = K.pool2d(
            y_true, pool_size=(11, 11), strides=(1, 1), padding='same', pool_mode='avg')
    border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
    weight = K.ones_like(averaged_mask)
    w0 = K.sum(weight)
    weight += border * 2
    w1 = K.sum(weight)
    weight *= (w0 / w1)
    loss = weighted_bce_loss(y_true, y_pred, weight) + \
    weighted_dice_loss(y_true, y_pred, weight)
    return loss
 
def unet(input_size):
    inputs = Input(input_size)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
 
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)
 
    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', 
                 kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6])
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv6)
 
    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', 
                 kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7])
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv7)
 
    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', 
                 kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8])
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv8)
 
    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', 
                 kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9])
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', 
                   kernel_initializer = 'he_normal')(conv9)
    conv10 = Conv2D(len(raster_value), 1, activation = 'softmax')(conv9)
 
    model = Model(inputs = inputs, outputs = conv10)
 
    model.compile(optimizer = Adam(lr = 1e-4), 
                  loss = weighted_bce_dice_loss, 
                  metrics = ['accuracy'])
 
    return model
 
model = unet(input_size=(256, 240, 3))

5.训练模型

适合模型

代码语言:javascript
复制
batch_size = 16
model.fit_generator(
        train_gen.flow(x_train, y_train, batch_size=batch_size),
        steps_per_epoch=len(x_train),
        epochs=20,
        verbose=1)
model.save(op.join('model.h5'))

6.验证模型并显示一些结果

绘制一个例子(图像,标签,预测)

代码语言:javascript
复制
idx = 4  #feel free to check different idx`s as you can see I`ve done in the photos bellow.
p = np.argmax(model.predict(np.array([x_train[idx]])), axis=3)
fig = plt.figure(figsize=(12,4))
ax1 = fig.add_subplot(1,3,1)
ax1.imshow(x_train_raw[idx])
ax2 = fig.add_subplot(1,3,2)
ax2.imshow(y_train_raw[idx][:,:,0])
ax3 = fig.add_subplot(1,3,3)
ax3.imshow(p[0])

绘制一个例子(图像,标签,预测)

代码语言:javascript
复制
idx = 4
p = np.argmax(model.predict(np.array([x_train[idx]])), axis=3)
fig = plt.figure(figsize=(12,4))
ax1 = fig.add_subplot(1,3,1)
ax1.imshow(x_train_raw[idx])
ax2 = fig.add_subplot(1,3,2)
ax2.imshow(y_train_raw[idx][:,:,0])
ax3 = fig.add_subplot(1,3,3)
ax3.imshow(p[0])

显示图像混淆矩阵

代码语言:javascript
复制
predictions = np.argmax(model.predict(x_train), axis=3)
cnf_matrix = confusion_matrix(y_train_raw.reshape(len(y_train_raw) * 256 * 256, 1), 
                              predictions.reshape(len(predictions) * 256 * 256, 1))
plot_confusion_matrix(cnf_matrix, raster_value.keys(), normalize=True)

完整的代码:

https://github.com/DanielMoraite/DanielMoraite.github.io/blob/master/assets/tree-cover-keras.ipynb

资源:

1.eo-learn的文档

https://eo-learn.readthedocs.io/en/latest/index.html

2.eo-learn github

https://github.com/sentinel-hub/eo-learn

3.建议复制驱动器上的eo-learn github存储库

4.sentinelhub创建帐户

https://services.sentinel-hub.com/oauth/subscription?param_redirect_uri=https://apps.sentinel-hub.com/dashboard/oauthCallback.html¶m_state=%2Fconfigurations¶m_scope=SH¶m_client_id=30cf1d69-af7e-4f3a-997d-0643d660a478&origin=

5.sentinelhub实例ID

https://www.sentinel-hub.com/faq/where-get-instance-id

6.sentinelhub安装

https://pypi.org/project/sentinelhub/

笔记:

代码语言:javascript
复制
# SentinelHub API Key (instance id) stored as an env variable(if you want to call it from your notebook):        
    import os
    os.environ['INSTANCE_ID']='your instance ID'
    INSTANCE_ID = os.environ.get('INSTANCE_ID')
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 相约机器人 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档