前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一文了解Kubernetes是什么?

一文了解Kubernetes是什么?

作者头像
kubernetes中文社区
发布2019-06-24 16:12:14
5740
发布2019-06-24 16:12:14
举报

一、传统的运维方式

在了解Kubernetes之前,我们有必要先简单了解一下传统的运维模式。在传统的项目架构中(单体or微服务),我们一般将项目打包为war或fatJar的方式进行部署。

在部署时,需要人工创建相应的服务器及资源,并搭建项目运行的依赖环境,预估服务需要占用的内存与CPU,同事还要考虑到高可用的部署环境,在不同配置的服务器上部署相应的服务。当服务意外崩溃或者服务器意外宕机时,需要人工处理。总结一下传统部署的不足如下:

依赖服务器环境,需要各服务器资源统一。

无法充分利用服务器等资源,使用率一般仅能达到70%。

无法或很难做到容灾恢复。

需要人工进行服务扩容,修改服务配置。

服务资源散乱(域名,服务器,负载,数据库),无法做集中管理。

时间消耗较多,增加运维成本。

需要借助第三方工具进行资源监控,较为麻烦。

需要对开发、测试、生产环境进行区别管理。

要想解决以上的问题是相对比较麻烦的,特别是现在的项目多为微服务项目,少则几十,多则上百,极大的增加了运维的难度和成本。

一、Kubernetes是什么?

官方文档中描述为:v

Kubernetes一个用于容器集群的自动化部署、扩容以及运维的开源平台。通过Kubernetes,你可以快速有效地响应用户需求;快速而有预期地部署你的应用;极速地扩展你的应用;无缝对接新应用功能;节省资源,优化硬件资源的使用。为容器编排管理提供了完整的开源方案。

介绍一下其中提到的几个词:

容器

我们现在常说的容器一般是指Docker容器,通过容器隔离的特性和宿主机进行解耦,使我们的服务不需要依赖于宿主机而运行,与宿主机互不影响,Docker容器十分轻量。而kubernetes则负责管理服务中所有的Docker容器,创建、运行、重启与删除容器。

快速响应

个人理解为两个方面。一、新增或者修改需求时,可以快速进行部署测试(CICD);二、kubernetes可以根据不同条件进行动态扩缩容,举个栗子,用户访问量突然由1000人上升到100000人时,现有的服务已经无法支撑,kubernetes会自动将用户服务模块增加更多实例以保证当前的系统访问量。

扩展

在快速响应的特点中已经有所提及,这里再补充一点: Kubernetes内部有完善的注册发现机制,当某个服务的实例增加时,kubernetes会自动将其加入服务列表中,免除在传统运维中需要人工维护服务列表的问题。

对接新应用

kubernetes是一个通用的容器编排框架,支持不同类型的语言,或者是语言无关的,新增加的应用都会以一个新的对象进行接入。

硬件资源

这一点我觉得是kubernetess很基本但是非常重要的一个优点了,kubernetes在部署应用时会自动检查各个服务器的cpu与内存使用量,同时会根据服务申请的cpu与内存资源,将服务部署到最合适的服务器。(其实这就是容器调度的核心功能了)

小知识: 因kubernetes名字过长,一般简称为k8s,因为k与s之间有8个字母,故而称之。

二、Kubernetes解决了什么问题?

下面以几个case进行阐述,便于理解。

服务器环境

kubernetes是使用Docker进行容器管理的,所以天生具备Docker的所有特性,只需要使用相应环境的Docker镜像就可以运行服务,还需要关心宿主机是redhat、centos还是ubuntu,只要在宿主机上安装Docker环境即可,相比传统运维,减少了各种依赖环境的冲突,降低运维成本,也方便整体服务的迁移。

服务器资源管理

对于kubernetes来说,是不关心有几台服务器的,每个服务器都是一个资源对象(Node),kubernetes关心的是这个Node上有多少可用的cpu和内存。例如现在有两台服务器

server01 (4c16g), 已用(2c7.5G)

server02 (4c16g), 已用(3c13G)

现在有一个服务ServiceA需要部署,ServiceA申明自己运行需要至少3G内存,这时kubernetes会根据调度策略将其部署到server01上,很明显server01的资源是更加充足的。实际上kubernetes的调度策略要复杂的多,kubernetes会监控整体服务器资源的状态进行调度,而以前的运维方式只能由人工判断资源使用。这里只做简单示例。

各个服务器节点的状态

总体集群的资源状态

服务容灾恢复

说简单点,就是服务挂了之后,能够自动恢复。例如现在有一个ServiceA,运行在server01上,kubernetes会通过内部的kubelet组件监控ServiceA服务进程的状态,一旦发现进程丢失(服务本身挂掉或者整个server01的服务器挂掉),就会尝试换一台资源充足的服务器重新部署ServiceA并启动,这样就可以确保我们的服务一直是可用状态,而不需要人工维护。

硬件资源利用

前面已经说过,kubernetes会根据节点(Node)的CPU与内存资源的可用量对服务进行部署调度,在调度策略中,可以配置不同的调度策略。例如现在有两台服务器:

server01 (4c16g), 已用(3c7.5G)

server02 (4c16g), 已用(1c13G)

需要部署两个服务

serviceA-Java, 申请2G内存,0.5CPU单位

ServiceB-Nginx, 申请200M内存,申请1CPU单位

这里kubernetes如果讲道理的话,会将ServiceA-Java部署到server01,将serviceB-Nginx部署到server02。这里server01的内存和server02的CPU资源都得到了充分的利用。经过个人实践,相比之前的部署方式,kubernetes节省了很多资源,资源利用是非常高效的。

服务资源创建

kubernetes创建服务是非常方便的,分为以下两个方面:

自有服务

在kubernetes中,进行项目服务部署是十分方便的,只需要构建好相应的镜像,编写一个yaml文件即可完成服务的部署。

yaml示例

代码语言:javascript
复制
apiVersion: apps/v1beta1
kind: Deployment
metadata:
  # 部署的模块名称
  name: phantom-server-admin
  # 需要部署哪个环境
  namespace: develop
spec:
  # 部署的实例数量
  replicas: 1
  template: 
    metadata:
      labels:
        # 给这个部署打个标签,方便之后进行选择
        app: phantom-server-admin
    spec:
      containers:
      # 服务的名称
      - name: phantom-server-admin
        # 服务的镜像
        image: phantom-server-admin:v1
        ports:
        # 服务的端口
        - containerPort: 7006
        resources:
          limits:
            # 该服务需要的内存
            memory: 1000Mi

公共基础服务

kubernetes开源社区中有一个工具叫helm, 类比的话就像是CentOS中的yum,我们可以通过这个工具进行简单快速的安装复杂的应用。阿里云提供了可视化的创建界面,创建十分方便,相比于传统运维需要自己进行基础软件的安装的优点是十分突出的,免去了繁琐的安装过程,服务的稳定性也有了一定的保障。

应用商店

eureka示例

可视化管理

在kubernetes中,所有的概念都抽象成不同的对象,而所有的对象都是可以通过图形化界面进行管理和监控的,当然了,也同时提供了命令行客户端kubectl进行管理。

对象创建

日志监控

服务资源监控

各个节点的使用量监控

每个服务的使用量监控

资源整合管理

在之前的运维过程中,对各种资源的管理是十分复杂的,想做到统一管理各种资源更是难上加难,从前到后,我们需要对域名、负载均衡、服务实例、存储服务进行逐个配置,配置的细节暂且不说,各个资源的关联关系就错综复杂,非专业运维人员是无法进行统一规划的。

而使用与云服务整合的kubernetes之后,这些问题都迎刃而解。先看下图做简单说明

这是阿里kubernetes的路由配置界面,其中将负载均衡设备与域名和对应的服务进行了绑定,可以很直观的表述三者之间的关系,同时易于修改排错。

版本管理与滚动升级

版本管理

kubernetes在部署服务时,会记录部署服务的版本,我们可以很容易的进行上次版本或跨版本回退。

滚动升级

kubernetes在进行服务升级时,采用的默认策略是先将一部分新的服务启动,确定服务正常后,停止一部分旧服务,进行新老服务的替换,之后再启动一些新的服务,停止一部分旧服务,直到旧服务全部停止,即切换完成。滚动省级的过程中,极大的减少了服务切换的间隔时间。

其它

上面所说的是kubernetes的主体功能,kubernetes还有很多其他重要的特性解决了之前运维的痛点,例如DNS解析、自动负载、存储声明等等。

三、kubernetes特点

网络模型

kubernetes采用了三层网络模型,分为PodIP,ClusterIP,NodeIP。用简单的话来说,kubernetes在内部使用自己的网络进行通讯,这样做一个最直接的好处是我们不用再担心端口冲突的问题。

举个栗子: 我们在server01上部署两个一样的服务serviceA-1,serviceA-2,两个服务的端口都是8080,这个时候有一个服务是无法启动的,因为端口被占用了,而在kubernetes中,两个服务在不同的Docker容器中,每个Docker容器都有自己的IP,这时就不会出现端口占用的问题了。

为什么要有三层网络有三个IP呢?其实每个IP的作用是不一样的:

NodeIP

NodeIP是最好理解的,就是每个服务器的IP。例如server01的IP是192.168.1.2,有一个服务实例的IP申明类型为NodeIP,端口申明为30222,那么我们就可以通过192.168.1.2:30222访问到这个服务实例。

PodIP

PodIP的作用可以简单理解为每个服务自己teyoudeIP,就像上面说的可以解决端口冲突的问题,同时也是每个服务的唯一标识。PodIP是无法通过外网访问的,只能在服务内部进行访问。

ClusterIP(可以按照下面访问的进行理解,但实际有所区别)

中文叫集群IP,对集群了解的同学应该很容易理解。集群IP可以简单理解为是对同一个服务的多个实例(每个实例有自己的PodIP)组成的集群的入口IP,换句话说,是对多个实例的负载IP。举个栗子:

有三个实例:

serviceA-1 172.22.1.2

serviceA-2 172.22.1.3

serviceA-3 172.22.1.4

有一个ClusterIP 172.23.2.23指向了serviceA服务,那么我们访问172.23.2.23则会负载转向到172.22.1.2、172.22.1.3、172.22.1.4中的其中一个服务

对象

在kubernetes中,万物皆对象。路由(Ingress)、服务(Service)、部署(Deployment)、存储(Storage/PV/PVC)、容器(Pod)、角色(Role)、账户(Accoutn)、配置(ConfigMap)等等。通过管理这些对象来管理整个kubernetes集群。

注意:此处说的服务(Service),不同于上文提到的服务(开发的项目模块)

声名式管理

kubernetes采用声名式进行资源管理,也就是从结果来看问题。举个栗子,现在需要部署十个ServiceA

面向过程: 部署ServiceA-01,再部署ServiceA02…..ServiceA-10,强调的是过程,用代码来表示的话就是while(serviceA.count < 10) {serviceA.count++}

面向结果(声明式):不管是同时部署还是挨个部署,总之要部署十个ServiceA服务。用代码来表示的话就是kubernetes.addServiceA(10),不用管内部的细节怎么处理,只要最终的结果。

四、Kubernetes常用相关概念

部署 - Deployment

类似于Docker中的镜像Image,也就是容器(Pods)实例的模板,容器实例是根据Deploy创建出来的。在Deployment对象中会写明容器的镜像,容器的版本,容器要部署的数量等信息。

容器组 - Pods

Pods是Kubernetes中的最小管理单元,Pods和Docker中的容器可以理解为包含关系,在Pods中可以包含有多个Docker容器,例如有ServiceA和ServiceB,ServiceA高度依赖ServiceB(需要共享主机的相同文件),这时就可以将ServiceA与ServiceB放在同一个Pods中,当做一个整体来管理。如果分开部署当然也可以,不过会小号额外的资源或者产生其他不必要的麻烦。

服务 - Service

Service是一个对象,这个对象有自己的IP,也就是ClusterIP,可以理解为就是下层服务的负载均衡。

路由 - Ingress

无论是容器组还是Service,外网都是无法直接访问的,Ingress就可以通过一个负载IP与Kubernetes集群内部进行通讯,一般会和Service对象进行配合使用。

配置项 - ConfigMap

简单理解为一个管理配置的对象,可以将项目的配置写入到ConfgiMap中,项目中的配置使用相应的变量名就可以读取相应的变量值。

还有很多其它概念,这是就不一一介绍了,可以参考Kubernetes中文社区

五、Kubernetes结构图

Kubernetes由Master节点和Worker节点组成。master节点是Kubernetes的大脑,而woker节点则是kubernetes中实际运行服务的劳动者。

Master主要由ETCD/Controller Manager/Api Server/Schedular能成,

ETCD

主要负责存储各个woker节点的状态和其它相关数据,可以理解为kubernetes的数据库。

Controller Manager

负责维护集群的状态,比如故障检测、自动扩展、滚动更新等

Scheduler

负责资源的调度,按照预定的调度策略将Pod调度到相应的机器上

Worker主要由kubelet和kube-proxy组成,一般还会安装kube-dns组件。

kubelet

负责维护容器的生命周期,同时也负责Volume(CVI)和网络(CNI)的管理;

kube-proxy

负责为Service提供cluster内部的服务发现和负载均衡;

kube-dns

负责为整个集群提供DNS服务,通过Service名称访问相应的服务

六、总结

Kubernetes在容器编排可谓是做到了淋漓尽致,解决了之前的种种痛点,但是学习成本也相对较高,需要结合一定的实践,踩一定的坑才能形成自己的理解。

作者:KimZing

原文地址:https://blog.csdn.net/KingBoyWorld/article/details/80966107

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-05-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 kubernetes中文社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档