看到网上有很多博客都是通过循环遍历的方式来进行RGB转HSI操作,但是我们知道在python中使用Numpy数组并行操作可以更加简洁,速度也更快。
import cv2 import numpy as np import sys In_path = "BGR.jpg" img = cv2.imread(In_path) img = cv2.resize(img,(400,300)) line, cols, chl = img.shape img = img.astype(np.float32) img_bgr = img.copy()/255 b,g,r = cv2.split(img_bgr) Tdata = np.where((2*np.sqrt((r-g)**2+(r-b)*(g-b))) != 0,np.arccos((2*r-b-g)/(2*np.sqrt((r-g)**2+(r-b)*(g-b)))),0) Hdata = np.where(g >= b,Tdata,2*3.1415926-Tdata) Hdata = Hdata / (2*3.1415926) Sdata = np.where((b+g+r) != 0, 1 - 3*np.minimum(b,g,r)/(b+g+r),0) Idata = (b+g+r)/3 img_hsi = np.zeros((300,400,3)) img_hsi[:,:,0] = Hdata*255 img_hsi[:,:,1] = Sdata*255 img_hsi[:,:,2] = Idata*255 img_hsi = np.array(img_hsi) print(img_hsi.shape) print(img.shape) while(True): cv2.imshow('rgb_lwpImg', img.astype(np.uint8)) cv2.imshow('hsi_lwpImg', img_hsi.astype(np.uint8)) cv2.imwrite("BGR_deal2.jpg",img_hsi.astype(np.uint8)) if(cv2.waitKey(1000//12) & 0xff == ord("q")): break cv2.destroyAllWindows()
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句