前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[TensorFlow深度学习入门]实战六·用CNN做Kaggle比赛手写数字识别准确率99%+

[TensorFlow深度学习入门]实战六·用CNN做Kaggle比赛手写数字识别准确率99%+

作者头像
小宋是呢
发布2019-06-27 14:30:20
8890
发布2019-06-27 14:30:20
举报
文章被收录于专栏:深度应用深度应用

TensorFlow深度学习入门实战六·用CNN做Kaggle比赛手写数字识别准确率99%+

参考博客地址

本博客采用Lenet5实现,也包含TensorFlow模型参数保存与加载参考我的博文,实用性比较好。在训练集准确率99.85%,测试训练集准确率99%+。

  • 训练与模型参数保存

train文件

代码语言:javascript
复制
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import pandas as pd
import tensorflow as tf  
from tensorflow.examples.tutorials.mnist import input_data  
  
mnist = input_data.read_data_sets('./1CNN/mnistcnn/data', one_hot=True)  
  
#sess = tf.InteractiveSession()  
  
#训练数据  
x = tf.placeholder("float", shape=[None, 784],name="x")  
#训练标签数据  
y_ = tf.placeholder("float", shape=[None, 10],name="y_")  
#把x更改为4维张量,第1维代表样本数量,第2维和第3维代表图像长宽, 第4维代表图像通道数, 1表示灰度  
x_image = tf.reshape(x, [-1,28,28,1])  
  
#第一层:卷积层  
conv1_weights = tf.get_variable("conv1_weights", [5, 5, 1, 32], initializer=tf.truncated_normal_initializer(stddev=0.1)) #过滤器大小为5*5, 当前层深度为1, 过滤器的深度为32  
conv1_biases = tf.get_variable("conv1_biases", [32], initializer=tf.constant_initializer(0.0))  
conv1 = tf.nn.conv2d(x_image, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') #移动步长为1, 使用全0填充  
relu1 = tf.nn.relu( tf.nn.bias_add(conv1, conv1_biases) ) #激活函数Relu去线性化  

#第二层:最大池化层  
#池化层过滤器的大小为2*2, 移动步长为2,使用全0填充  
pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  

#第三层:卷积层  
conv2_weights = tf.get_variable("conv2_weights", [5, 5, 32, 64], initializer=tf.truncated_normal_initializer(stddev=0.1)) #过滤器大小为5*5, 当前层深度为32, 过滤器的深度为64  
conv2_biases = tf.get_variable("conv2_biases", [64], initializer=tf.constant_initializer(0.0))  
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME') #移动步长为1, 使用全0填充  
relu2 = tf.nn.relu( tf.nn.bias_add(conv2, conv2_biases) )  

#第四层:最大池化层  
#池化层过滤器的大小为2*2, 移动步长为2,使用全0填充  
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
  
#第五层:全连接层  
fc1_weights = tf.get_variable("fc1_weights", [7 * 7 * 64, 1024], initializer=tf.truncated_normal_initializer(stddev=0.1)) #7*7*64=3136把前一层的输出变成特征向量  
fc1_baises = tf.get_variable("fc1_baises", [1024], initializer=tf.constant_initializer(0.1))  
pool2_vector = tf.reshape(pool2, [-1, 7 * 7 * 64])  
fc1 = tf.nn.relu(tf.matmul(pool2_vector, fc1_weights) + fc1_baises)  
  
#为了减少过拟合,加入Dropout层  
keep_prob = tf.placeholder(tf.float32,name="keep_prob") 
fc1_dropout = tf.nn.dropout(fc1, keep_prob)  

#第六层:全连接层  
fc2_weights = tf.get_variable("fc2_weights", [1024, 10], initializer=tf.truncated_normal_initializer(stddev=0.1)) #神经元节点数1024, 分类节点10  
fc2_biases = tf.get_variable("fc2_biases", [10], initializer=tf.constant_initializer(0.1))  
fc2 = tf.matmul(fc1_dropout, fc2_weights) + fc2_biases  
  
#第七层:输出层  
# softmax  
y_conv = tf.nn.softmax(fc2,name="y_conv")  
y_conv_labels = tf.argmax(y_conv,1,name='y_conv_labels')
#定义交叉熵损失函数  
y_conv = tf.clip_by_value(y_conv,1e-4,1.99)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))  
  
#选择优化器,并让优化器最小化损失函数/收敛, 反向传播  
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  
  
# tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真实值  
# 判断预测值y和真实值y_中最大数的索引是否一致,y的值为1-10概率  
correct_prediction = tf.equal(y_conv_labels, tf.argmax(y_,1))  
  
# 用平均值来统计测试准确率  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),name="accuracy")  

def convert2onehot(data):
    # covert data to onehot representation
    return pd.get_dummies(data)

file_path = "./1CNN/mnistcnn/datas/train.csv"
df_data = pd.read_csv(file_path, sep=",", header="infer")
np_data = df_data.values
trainx = np_data[:, 1:]/255
trainy = convert2onehot(np_data[:, 0]).values

with tf.Session() as sess:

    #开始训练  
    srun = sess.run
    srun(tf.global_variables_initializer())
    saver = tf.train.Saver()
    
    for i in range(6001):  
        start_step = i*100 % 42000
        stop_step = start_step+100

        batch_x, batch_y = trainx[start_step:stop_step], trainy[start_step:stop_step]
        srun(train_step,feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.5}) #训练阶段使用50%的Dropout  
        if i%100 == 0:  
            train_accuracy = srun(accuracy,feed_dict={x:batch_x, y_: batch_y, keep_prob: 1.0}) #评估阶段不使用Dropout  
            print("step %d, training accuracy %f" % (i, train_accuracy))  
            saver_path = saver.save(sess, "./1CNN/mnistcnn/ckpt/my_model.ckpt",global_step=i)  # 将模型保存到save/model.ckpt文件

    
    #print("W1:", sess.run(conv1_weights)) # 打印v1、v2的值一会读取之后对比
    #print("W2:", sess.run(conv1_biases))

    print("Model saved in file:", saver_path)
    
    #在测试数据上测试准确率  
    print("test accuracy %g" % srun(accuracy,feed_dict={x: trainx, y_: trainy, keep_prob: 1.0}))  
    print("test accuracy %g" % srun(accuracy,feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))  

运行结果:

代码语言:javascript
复制
...
step 5800, training accuracy 1.000000
step 5900, training accuracy 0.990000
step 6000, training accuracy 1.000000
Model saved in file: ./1CNN/mnistcnn/ckpt/my_model.ckpt-6000
test accuracy 0.998571
test accuracy 0.9958
  • 模型加载与复用

app文件:

代码语言:javascript
复制
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import tensorflow as tf
import pandas as pd


file_path = "./1CNN/mnistcnn/datas/test.csv"
df_data = pd.read_csv(file_path, sep=",", header="infer")
np_data = df_data.values
testx = np_data[:, :]/255

file_path1 = "./1CNN/mnistcnn/datas/sample_submission.csv"
df_data1 = pd.read_csv(file_path1, sep=",", header="infer")

print(df_data1.head())
df_data1.drop(labels="Label",axis = 1,inplace=True)
print(df_data1.head())

with tf.Session() as sess:    
    #加载运算图
    saver = tf.train.import_meta_graph('./1CNN/mnistcnn/ckpt/my_model.ckpt-6000.meta')
    #加载参数
    saver.restore(sess,tf.train.latest_checkpoint('./1CNN/mnistcnn/ckpt'))
    graph = tf.get_default_graph()
    #导入输入接口
    x = graph.get_tensor_by_name("x:0")
    #导入输出接口
    y_ = graph.get_tensor_by_name("y_:0")

    keep_prob = graph.get_tensor_by_name("keep_prob:0")
    y_conv_labels = graph.get_tensor_by_name("y_conv_labels:0")

    y_conv_labels_val = sess.run(y_conv_labels,{x:testx[:],keep_prob:1.0})

    #进行预测
    print("y: ",y_conv_labels_val[:10])

    df_data1["Label"] = y_conv_labels_val
    print(df_data1.head())
    df_data1.to_csv(file_path1,columns=["ImageId","Label"],index=False)
    print("Ok")

运行结果:

代码语言:javascript
复制
 ImageId  Label
0        1      0
1        2      0
2        3      0
3        4      0
4        5      0
   ImageId
0        1
1        2
2        3
3        4
4        5

y:  [2 0 9 9 3 7 0 3 0 3]
   ImageId  Label
0        1      2
1        2      0
2        3      9
3        4      9
4        5      3
Ok
  • 结果分析

Kaagle平台结果

代码语言:javascript
复制
Your Best Entry 
You advanced 381 places on the leaderboard!

Your submission scored 0.98928, which is an improvement of your previous score of 0.98142. Great job!

通过这个cnn识别手写数字实战,加深了对于cnn的理解与运用能力。

使用TensorFlow模型参数保存与加载参考我的博文也使得代码应用更加灵活高效,条理也更加清晰了,推荐大家使用。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年12月01日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • TensorFlow深度学习入门实战六·用CNN做Kaggle比赛手写数字识别准确率99%+
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档