首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[深度应用]·实战掌握PyTorch图片分类简明教程

[深度应用]·实战掌握PyTorch图片分类简明教程

作者头像
小宋是呢
发布2019-06-27 15:00:46
4650
发布2019-06-27 15:00:46
举报
文章被收录于专栏:深度应用深度应用

深度应用·实战掌握PyTorch图片分类简明教程

个人网站--> http://www.yansongsong.cn 项目GitHub地址--> https://github.com/xiaosongshine/image_classifier_PyTorch

1.引文

深度学习的比赛中,图片分类是很常见的比赛,同时也是很难取得特别高名次的比赛,因为图片分类已经被大家研究的很透彻,一些开源的网络很容易取得高分。如果大家还掌握不了使用开源的网络进行训练,再慢慢去模型调优,很难取得较好的成绩。

我们在[PyTorch小试牛刀]实战六·准备自己的数据集用于训练讲解了如何制作自己的数据集用于训练,这个教程在此基础上,进行训练与应用。

2.数据介绍

数据 下载地址

这次的实战使用的数据是交通标志数据集,共有62类交通标志。其中训练集数据有4572张照片(每个类别大概七十个),测试数据集有2520张照片(每个类别大概40个)。数据包含两个子目录分别train与test:

为什么还需要测试数据集呢?这个测试数据集不会拿来训练,是用来进行模型的评估与调优。

train与test每个文件夹里又有62个子文件夹,每个类别在同一个文件夹内:

我从中打开一个文件间,把里面图片展示出来:

其中每张照片都类似下面的例子,100*100*3的大小。100是照片的照片的长和宽,3是什么呢?这其实是照片的色彩通道数目,RGB。彩色照片存储在计算机里就是以三维数组的形式。我们送入网络的也是这些数组。

3.网络构建

1.导入Python包,定义一些参数

import torch as t
import torchvision as tv
import os
import time
import numpy as np
from tqdm import tqdm


class DefaultConfigs(object):

    data_dir = "./traffic-sign/"
    data_list = ["train","test"]

    lr = 0.001
    epochs = 10
    num_classes = 62
    image_size = 224
    batch_size = 40
    channels = 3
    gpu = "0"
    train_len = 4572
    test_len = 2520
    use_gpu = t.cuda.is_available()

config = DefaultConfigs()

2.数据准备,采用PyTorch提供的读取方式(具体内容参考[PyTorch小试牛刀]实战六·准备自己的数据集用于训练

注意一点Train数据需要进行随机裁剪,Test数据不要进行裁剪了

normalize = tv.transforms.Normalize(mean = [0.485, 0.456, 0.406],
                                    std = [0.229, 0.224, 0.225]
                                    )

transform = {
    config.data_list[0]:tv.transforms.Compose(
        [tv.transforms.Resize([224,224]),tv.transforms.CenterCrop([224,224]),
        tv.transforms.ToTensor(),normalize]#tv.transforms.Resize 用于重设图片大小
    ) ,
    config.data_list[1]:tv.transforms.Compose(
        [tv.transforms.Resize([224,224]),tv.transforms.ToTensor(),normalize]
    ) 
}

datasets = {
    x:tv.datasets.ImageFolder(root = os.path.join(config.data_dir,x),transform=transform[x])
    for x in config.data_list
}

dataloader = {
    x:t.utils.data.DataLoader(dataset= datasets[x],
        batch_size=config.batch_size,
        shuffle=True
    ) 
    for x in config.data_list
}

3.构建网络模型(使用resnet18进行迁移学习,训练参数为最后一个全连接层 t.nn.Linear(512,num_classes))

def get_model(num_classes):
    
    model = tv.models.resnet18(pretrained=True)
    for parma in model.parameters():
        parma.requires_grad = False
    model.fc = t.nn.Sequential(
        t.nn.Dropout(p=0.3),
        t.nn.Linear(512,num_classes)
    )
    return(model)

如果电脑硬件支持,可以把下述代码屏蔽,则训练整个网络,最终准确率会上升,训练数据会变慢。

for parma in model.parameters():
    parma.requires_grad = False

模型输出

ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
  (fc): Sequential(
    (0): Dropout(p=0.3)
    (1): Linear(in_features=512, out_features=62, bias=True)
  )
)

4.训练模型(支持自动GPU加速,GPU使用教程参考:[开发技巧]·PyTorch如何使用GPU加速

def train(epochs):

    model = get_model(config.num_classes)
    print(model)
    loss_f = t.nn.CrossEntropyLoss()
    if(config.use_gpu):
        model = model.cuda()
        loss_f = loss_f.cuda()
    
    opt = t.optim.Adam(model.fc.parameters(),lr = config.lr)
    time_start = time.time()
    
    for epoch in range(epochs):
        train_loss = []
        train_acc = []
        test_loss = []
        test_acc = []
        model.train(True)
        print("Epoch {}/{}".format(epoch+1,epochs))
        for batch, datas in tqdm(enumerate(iter(dataloader["train"]))):
            x,y = datas
            if (config.use_gpu):
                x,y = x.cuda(),y.cuda()
            y_ = model(x)
            #print(x.shape,y.shape,y_.shape)
            _, pre_y_ = t.max(y_,1)
            pre_y = y
            #print(y_.shape)
            loss = loss_f(y_,pre_y)
            #print(y_.shape)
            acc = t.sum(pre_y_ == pre_y)

            loss.backward()
            opt.step()
            opt.zero_grad()
            if(config.use_gpu):
                loss = loss.cpu()
                acc = acc.cpu()
            train_loss.append(loss.data)
            train_acc.append(acc)
            #if((batch+1)%5 ==0):
        time_end = time.time()
        print("Batch {}, Train loss:{:.4f}, Train acc:{:.4f}, Time: {}"\
            .format(batch+1,np.mean(train_loss)/config.batch_size,np.mean(train_acc)/config.batch_size,(time_end-time_start)))
        time_start = time.time()
        
        model.train(False)
        for batch, datas in tqdm(enumerate(iter(dataloader["test"]))):
            x,y = datas
            if (config.use_gpu):
                x,y = x.cuda(),y.cuda()
            y_ = model(x)
            #print(x.shape,y.shape,y_.shape)
            _, pre_y_ = t.max(y_,1)
            pre_y = y
            #print(y_.shape)
            loss = loss_f(y_,pre_y)
            acc = t.sum(pre_y_ == pre_y)

            if(config.use_gpu):
                loss = loss.cpu()
                acc = acc.cpu()

            test_loss.append(loss.data)
            test_acc.append(acc)
        print("Batch {}, Test loss:{:.4f}, Test acc:{:.4f}".format(batch+1,np.mean(test_loss)/config.batch_size,np.mean(test_acc)/config.batch_size))

        t.save(model,str(epoch+1)+"ttmodel.pkl")



if __name__ == "__main__":
    train(config.epochs)

训练结果如下:

Epoch 1/10
115it [00:48,  2.63it/s]
Batch 115, Train loss:0.0590, Train acc:0.4635, Time: 48.985504150390625
63it [00:24,  2.62it/s]
Batch 63, Test loss:0.0374, Test acc:0.6790, Time :24.648272275924683
Epoch 2/10
115it [00:45,  3.22it/s]
Batch 115, Train loss:0.0271, Train acc:0.7576, Time: 45.68823838233948
63it [00:23,  2.62it/s]
Batch 63, Test loss:0.0255, Test acc:0.7524, Time :23.271782875061035
Epoch 3/10
115it [00:45,  3.19it/s]
Batch 115, Train loss:0.0181, Train acc:0.8300, Time: 45.92648506164551
63it [00:23,  2.60it/s]
Batch 63, Test loss:0.0212, Test acc:0.7861, Time :23.80789279937744
Epoch 4/10
115it [00:45,  3.28it/s]
Batch 115, Train loss:0.0138, Train acc:0.8767, Time: 45.27525019645691
63it [00:23,  2.57it/s]
Batch 63, Test loss:0.0173, Test acc:0.8385, Time :23.736321449279785
Epoch 5/10
115it [00:44,  3.22it/s]
Batch 115, Train loss:0.0112, Train acc:0.8950, Time: 44.983638286590576
63it [00:22,  2.69it/s]
Batch 63, Test loss:0.0156, Test acc:0.8520, Time :22.790074348449707
Epoch 6/10
115it [00:44,  3.19it/s]
Batch 115, Train loss:0.0095, Train acc:0.9159, Time: 45.10426950454712
63it [00:22,  2.77it/s]
Batch 63, Test loss:0.0158, Test acc:0.8214, Time :22.80412459373474
Epoch 7/10
115it [00:45,  2.95it/s]
Batch 115, Train loss:0.0081, Train acc:0.9280, Time: 45.30439043045044
63it [00:23,  2.66it/s]
Batch 63, Test loss:0.0139, Test acc:0.8528, Time :23.122379541397095
Epoch 8/10
115it [00:44,  3.23it/s]
Batch 115, Train loss:0.0073, Train acc:0.9300, Time: 44.304762840270996
63it [00:22,  2.74it/s]
Batch 63, Test loss:0.0142, Test acc:0.8496, Time :22.801835536956787
Epoch 9/10
115it [00:43,  3.19it/s]
Batch 115, Train loss:0.0068, Train acc:0.9361, Time: 44.08414030075073
63it [00:23,  2.44it/s]
Batch 63, Test loss:0.0142, Test acc:0.8437, Time :23.604419231414795
Epoch 10/10
115it [00:46,  3.12it/s]
Batch 115, Train loss:0.0063, Train acc:0.9337, Time: 46.76597046852112
63it [00:24,  2.65it/s]
Batch 63, Test loss:0.0130, Test acc:0.8591, Time :24.64351773262024

训练10个Epoch,测试集准确率可以到达0.86,已经达到不错效果。通过修改参数,增加训练,可以达到更高的准确率。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019年04月19日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.引文
  • 2.数据介绍
  • 3.网络构建
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档