专栏首页深度应用[深度应用]·实战掌握Dlib人脸识别开发教程

[深度应用]·实战掌握Dlib人脸识别开发教程

[深度应用]·实战掌握Dlib人脸识别开发教程

项目GitHub地址--> https://github.com/xiaosongshine/dlib_face_recognition

1.背景介绍

Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口,功能类似于TensorFlow与PyTorch。但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识别开发很适合做人脸项目开发。

上面所说的人脸识别开发,主要是指人脸验证,就是输入两张人脸照片,系统会对比输出0或者1,代表判断是否是同一个人。一般的人脸识别开发可以简单分为1.人脸特征建模2.使用人脸特征模型进行验证(其实还应包括人脸对齐等,这些也可以划分到1中)。使用Dlib进行开发时,我们直接可以使用训练好的人脸特征提取模型,主要的工作就变成了如何进行人脸的验证。

人脸的验证其实就是计算相似度,同一个人的相似度就会大,不同的人就会比较小。可以采用余弦相似度或者欧式距离来计算相似度。其中余弦相似度就是计算角度,欧式距离就是指平方差。都可以用来表示两个特征的相似度(距离)。

2.环境搭建

安装可以参考我的这篇博客:[深度学习工具]·极简安装Dlib人脸识别库,下面说一下需要注意的点::

此博文针对Windows10安装,其他平台可以仿照这个步骤来安装

  • 安装Miniconda

使用conda指令来安装Dlib库,使用Miniconda与Anaconda都可以,我习惯用Miniconda,简单占用内存小。 推荐使用清华源,下载安装,选择合适的平台版本。python==3.6

  • 安装dlib 注意一定要以管理员身份进入CMD,执行(如果是Linux Mac 就使用 sudo)
conda install -c conda-forge dlib
  • 需要imageio 库,可以使用下述命令安装
conda install imageio

3.开发实战

1.实现人脸检测标记

face_test.py

import dlib
from imageio import imread
import glob


detector = dlib.get_frontal_face_detector()
win = dlib.image_window()

path = "f1.jpg"
img = imread(path)
dets = detector(img)
print('检测到了 %d 个人脸' % len(dets))
for i, d in enumerate(dets):
	print('- %d:Left %d Top %d Right %d Bottom %d' % (i, d.left(), d.top(), d.right(), d.bottom()))

win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue()

代码很简单,通过imread读取照片,然后进行检测,输出结果为dets的list,有几张人脸就会有几个item, 每个item都有.left(), .top(), .right(), .bottom()四个元素,代表人脸框的四个边界位置。最后通过win.add_overlay(dets)可以将标记的框显示在原图上。

原始照片

输出照片

其实我们就可以使用这个功能做一个简单的应用,用来检测图片或者视频中人脸的个数。

2.人脸特征点提取

在实战1的基础上添加人脸特征提取功能。

import dlib
from imageio import imread
import glob


detector = dlib.get_frontal_face_detector()
win = dlib.image_window()

predictor_path = 'shape_predictor_68_face_landmarks.dat'
predictor = dlib.shape_predictor(predictor_path)

path = "f2.jpg"
img = imread(path)
dets = detector(img)
print('检测到了 %d 个人脸' % len(dets))


for i, d in enumerate(dets):
	print('- %d: Left %d Top %d Right %d Bottom %d' % (i, d.left(), d.top(), d.right(), d.bottom()))
	shape = predictor(img, d)
		# 第 0 个点和第 1 个点的坐标
	print('Part 0: {}, Part 1: {}'.format(shape.part(0), shape.part(1)))
win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
win.add_overlay(shape)
dlib.hit_enter_to_continue()

这段代码就是在test.py基础上加入了shape_predictor功能,使之可以在检测出人脸基础上,找到人脸的68个特征点。反映在图中就是蓝色的线。

原始图片

输出图片

注意运行这段代码需要这个文件predictor_path = 'shape_predictor_68_face_landmarks.dat',我会放在我的github中,方便大家下载使用。

3.人脸识别验证

在第二步的基础上,我们再进一步,实现将人脸提取为特征向量,从而我们就可以对特征向量进行比对来实现人脸的验证,这里采用的是对比欧式距离的方法。

face_recognition.py

import dlib
from imageio import imread
import glob
import numpy as np

detector = dlib.get_frontal_face_detector()
predictor_path = 'shape_predictor_68_face_landmarks.dat'
predictor = dlib.shape_predictor(predictor_path)
face_rec_model_path = 'dlib_face_recognition_resnet_model_v1.dat'
facerec = dlib.face_recognition_model_v1(face_rec_model_path)


def get_feature(path):
	img = imread(path)
	dets = detector(img)
	print('检测到了 %d 个人脸' % len(dets))
	# 这里假设每张图只有一个人脸
	shape = predictor(img, dets[0])
	face_vector = facerec.compute_face_descriptor(img, shape)
	return(face_vector)

def distance(a,b):
	a,b = np.array(a), np.array(b)
	sub = np.sum((a-b)**2)
	add = (np.sum(a**2)+np.sum(b**2))/2.
	return sub/add

path_lists1 = ["f1.jpg","f2.jpg"]
path_lists2 = ["赵丽颖照片.jpg","赵丽颖测试.jpg"]

feature_lists1 = [get_feature(path) for path in path_lists1]
feature_lists2 = [get_feature(path) for path in path_lists2]

print("feature 1 shape",feature_lists1[0].shape)

out1 = distance(feature_lists1[0],feature_lists1[1])
out2 = distance(feature_lists2[0],feature_lists2[1])

print("diff distance is",out1)
print("same distance is",out2)

out1 = distance(feature_lists1[0],feature_lists1[1])
out2 = distance(feature_lists2[0],feature_lists2[1])

输出结果

检测到了 1 个人脸
检测到了 1 个人脸
检测到了 1 个人脸
检测到了 1 个人脸

feature 1 shape (128, 1)

diff distance is 0.254767715912
same distance is 0.0620976363391

我们可以看出,每张人脸都被提取为了128维的向量,我们可以理解为128维的坐标(xyz是三维,128维就是有128个轴组成),我们下面需要做的就是计算两个特征的距离,设定好合适的阈值,小于这个阈值则识别为同一个人。代码正确运行需要这个文件face_rec_model_path = 'dlib_face_recognition_resnet_model_v1.dat',我已经放在自己的github中,方便大家使用。

我们从上面测试的结果可以看出,不同的距离为0.25,同一个人为0.06,阈值就可以先设置为其间的一个值。我这里先设置为0.09,这个阈值也是需要大量数据来计算的,选择的准则为使错误识别为最低。

下面我们把阈值设置为0.09,来测试系统能否区分出不同的人:在face_recognition.py加入下面代码

def classifier(a,b,t = 0.09):
	if(distance(a,b)<=t):
		ret = True
	else :
		ret = False
	return(ret)

print("f1 is 赵丽颖",classifier(feature_lists1[0],feature_lists2[1]))
print("f2 is 赵丽颖",classifier(feature_lists1[1],feature_lists2[1]))
print("赵丽颖照片.jpg is 赵丽颖测试.jpg",classifier(feature_lists2[0],feature_lists2[1]))

输出结果

f1 is 赵丽颖 False
f2 is 赵丽颖 False
赵丽颖照片.jpg is 赵丽颖测试.jpg True

从上面可以看出,已基本满足对人脸区分的功能,如果如要实用化则需要继续调优阈值与代码,调优的准则就是选择合适的阈值使错误识别为最低。

Hope this helps

项目GitHub地址--> https://github.com/xiaosongshine/dlib_face_recognition

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • [深度学习工具]·极简安装Dlib人脸识别库

    Dlib是一个现代化的C ++工具箱,其中包含用于在C ++中创建复杂软件以解决实际问题的机器学习算法和工具。它广泛应用于工业界和学术界,包括机器人,嵌入式设备...

    小宋是呢
  • [深度应用]·基于卷积神经网络人脸识别的原理及应用开发(转)

    这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值,它的结构如...

    小宋是呢
  • [开发技巧]·Numpy广播机制的深入理解与应用

    我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作。广播机制很方便,但是概念却也有些复...

    小宋是呢
  • 实战 | 如何用最快的速度学会Dlib人脸识别开发?

    项目GitHub地址:https://github.com/xiaosongshine/dlib_face_recognition

    AI科技大本营
  • 手把手教学从0到1搭建人脸融合小程序(下)

    由于本文主要介绍小程序端调用人脸融合云接口,所以前端这里简单设计,整个前端页面分为三个区域:

    MIKADO
  • 90行代码,15个元素实现无限滚动

    无限下拉加载技术使用户在大量成块的内容面前一直滚动查看。这种方法是在你向下滚动的时候不断加载新内容。

    前端劝退师
  • 探索:怎样将单个vue文件转换为小程序所需的四个文件(wxml, wxss, json, js)

    比如JavaScript在执行之前,会经过词法分析和语法分析两个步骤之后,得到一个抽象语法树。

    极乐君
  • 构造Python中的常量类

    通过命名风格来提示使用者该变量代表的意义为常量,比如MAX_NUMBER、TOTAL。然而这种方式并没有真正实现常量,其对应的值仍然可以被改变,这只是一种约定俗...

    py3study
  • 深度:从零编写一个微前端框架

    那么现在我们需要手写一个微前端框架,首先得让大家知道什么是微前端,现在微前端模式分很多种,但是大都是一个基座+多个子应用模式,根据子应用注册的规则,去展示子应用...

    Peter谭金杰
  • Golang之变量去哪儿

    写过C/C++的同学都知道,调用著名的malloc和new函数可以在堆上分配一块内存,这块内存的使用和销毁的责任都在程序员。一不小心,就会发生内存泄露,搞得胆战...

    梦醒人间

扫码关注云+社区

领取腾讯云代金券