python3生成标签云

标签云是现在大数据里面最喜欢使用的一种展现方式,其中在python3下也能实现标签云的效果,贴图如下:

-------------------进入正文---------------------

首先要安装以下几个库:

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3 
4 # http://www.lfd.uci.edu/~gohlke/pythonlibs/#cx_freeze
5 # 万能仓库下载pygame
6 # pip3下载simplejson

还有最重要的库:

pip3 install pytagcloud

或者去官网下载:

https://pypi.python.org/pypi/pytagcloud/

安装完毕,利用官网的例子来做:

1 from pytagcloud import create_tag_image, make_tags
2 from pytagcloud.lang.counter import get_tag_counts
3 
4 YOUR_TEXT = "A tag cloud is a visual representation for text data, typically\
5 used to depict keyword metadata on websites, or to visualize free form text."
6 
7 tags = make_tags(get_tag_counts(YOUR_TEXT), maxsize=120)
8 
9 create_tag_image(tags, 'cloud_large.png', size=(900, 600), fontname='Lobster')

果断报错:

Traceback (most recent call last):
  File "D:/code/pythonwork/Text.py", line 96, in <module>
    tags = make_tags(get_tag_counts(YOUR_TEXT), maxsize=120)
  File "C:\Python34\lib\site-packages\pytagcloud\lang\counter.py", line 25, in get_tag_counts
    return sorted(counted.iteritems(), key=itemgetter(1), reverse=True)
AttributeError: 'dict' object has no attribute 'iteritems'

看了发现问题出在库中的:

# counter.py
return sorted(counted.iteritems(), key=itemgetter(1), reverse=True)

原来是python3.4不支持写法:

在Python2.x中,items( )用于 返回一个字典的拷贝列表【Returns a copy of the list of all items (key/value pairs) in D】,占额外的内存。

iteritems() 用于返回本身字典列表操作后的迭代【Returns an iterator on all items(key/value pairs) in D】,不占用额外的内存。

Python 3.x 里面,iteritems() 和 viewitems() 这两个方法都已经废除了,而 items() 得到的结果是和 2.x 里面 viewitems() 一致的。在3.x 里 用 items()替换iteritems() ,可以用于 for 来循环遍历。

但是当我换成:

# counter.py
return sorted(counted.items(), key=itemgetter(1), reverse=True)

发现运行并没有错误,但是没有生成标签云啊,一遍一遍打印出来,终于找到问题了:

from pytagcloud import create_tag_image

这个是为了生成一个元组的东西:

    # counts =[('cloud', 3),
    # ('words', 2),
    # ('code', 1),
    # ('word', 1),
    # ('appear', 1)]

但是python3里面的items()是达不到这个效果的,所以我就自己写吧。

读取txt文件,将每一行都按照空格划分成一个个数组的元素:

1  arr = []
2  file = open('../tagcloud/tag_file.txt', 'r')
3  data = file.read().split('\r\n')
4  for content in data:
5     contents = validatecontent(content).split()
6     for word in contents:
7         arr.append(word)
['BAISC', 'Python', 'BASICA', 'GVBASIC', 'GWBASIC', 'Python', 'ETBASIC', 'QBASIC', 'Quick', 'Basic', 'Turbo', 'Basic', 'True', 'Python', 'java', 'Basic', 'Visual', 'Basic', 'Visual', 'Basic', 'Net', 'Power', 'Basic', 'Python', 'java', 'SQL', 'VB', 'Small', 'Basic', 'Free', 'Basic', 'DarkBASIC', 'VBScript', 'Visual', 'Basic', 'For', 'ApplicationsVBA', 'REALbasic', 'C', 'C', 'Turbo', 'C', 'Python', 'java', 'SQL', 'VB', 'PHP', 'HTML', 'Borland', 'C', 'C', 'Builder', 'CCLI', 'Python', 'java', 'ObjectiveC', 'C#', 'Microsoft', 'Visual', 'C', 'Pascal', 'Delphi', 'Turbo', 'Python', 'java', 'SQL', 'VB', 'PHP', 'HTML', 'Pascal', 'Object', 'Pascal', 'Free', 'Pascal', 'Lazarus', 'FORTRAN', 'MATLAB', 'Scilab', 'GNU', 'Octave', 'R', 'SPlus', 'Mathematica', 'Maple', 'Python', 'java', 'SQL', 'VB', 'PHP', 'HTML', 'Julia', 'xBaseClipper', 'Visual', 'FoxPro', 'SQLPLSQL', 'TSQL', 'SQLPSM', 'LINQ', 'Xquer', 'Lua', 'Python', 'java', 'SQL', 'VB', 'Perl', 'PHP', 'Python', 'Ruby', 'ASP', 'JSP', 'TclTk', 'VBScript', 'AppleScript', 'AAuto', 'ActionScript', 'DMDScript', 'ECMAScript', 'JavaScript', 'JScript', 'TypeScript', 'sh', 'bash', 'Python', 'java', 'SQL', 'VB', 'PHP', 'HTML', 'sed', 'awk', 'PowerShell', 'csh', 'tcsh', 'ksh', 'zsh', 'XMLSVG', 'XML', 'Schema', 'Python', 'java', 'XSLT', 'XHTML', 'MathML', 'XAML', 'SSML', 'SGML', 'HTML', 'Python', 'java', 'SQL', 'VB', 'Curl', 'SVG', 'XML', 'Schema', 'XSLT', 'XHTML', 'MathML', 'XAML', 'SSML', 'Java', 'Jython', 'JRuby', 'JScheme', 'Groovy', 'Kawa', 'Scala', 'Clojure', 'ALGOL', 'APLJ', 'Ada', 'Falcon', 'Forth', 'Io', 'MUMPS', 'PLI', 'PostScript', 'REXX', 'SAC', 'Self', 'Simula', 'Swift', 'IronPython', 'IronRuby', 'COBOL', 'Python', 'java', 'SQL', 'VB', 'PHP', 'HTML']

其中validatecontent是起初非法字符的函数:

1 # 去除内容中的非法字符 (Windows)
2 def validatecontent(content):
3     # '/\:*?"<>|'
4     rstr = r"[\/\\\:\*\?\"\<\>\|\.\*\+\-\(\)\"\'\(\)\!\?\“\”\,\。\;\:\{\}\{\}\=\%\*\~\·]"
5     new_content = re.sub(rstr, "", content)
6     return new_content

对每一个元素都来个计数:

from collections import Counter
counts = Counter(arr).items()
print(counts)

效果出来了:

dict_items([('For', 1), ('SQL', 8), ('JRuby', 1), ('Builder', 1), ('HTML', 6), ('LINQ', 1), ('BAISC', 1), ('BASICA', 1), ('PHP', 6), ('Octave', 1), ('csh', 1), ('PostScript', 1), ('awk', 1), ('Ruby', 1), ('AppleScript', 1), ('Object', 1), ('java', 11), ('TclTk', 1), ('Xquer', 1), ('ksh', 1), ('zsh', 1), ('ETBASIC', 1), ('AAuto', 1), ('Borland', 1), ('SVG', 1), ('Jython', 1), ('Simula', 1), ('IronPython', 1), ('Python', 14), ('Microsoft', 1), ('ActionScript', 1), ('XHTML', 2), ('REXX', 1), ('COBOL', 1), ('Scilab', 1), ('Ada', 1), ('Basic', 9), ('GVBASIC', 1), ('ECMAScript', 1), ('TypeScript', 1), ('Falcon', 1), ('Clojure', 1), ('ASP', 1), ('ALGOL', 1), ('XMLSVG', 1), ('GWBASIC', 1), ('VBScript', 2), ('CCLI', 1), ('Lazarus', 1), ('Julia', 1), ('JSP', 1), ('PowerShell', 1), ('IronRuby', 1), ('Power', 1), ('FORTRAN', 1), ('Self', 1), ('Perl', 1), ('Small', 1), ('FoxPro', 1), ('REALbasic', 1), ('GNU', 1), ('Mathematica', 1), ('True', 1), ('Visual', 5), ('JScheme', 1), ('Maple', 1), ('Quick', 1), ('Turbo', 3), ('SAC', 1), ('JScript', 1), ('APLJ', 1), ('sh', 1), ('Kawa', 1), ('Pascal', 4), ('TSQL', 1), ('SPlus', 1), ('C', 6), ('xBaseClipper', 1), ('tcsh', 1), ('SQLPSM', 1), ('ApplicationsVBA', 1), ('SSML', 2), ('R', 1), ('Groovy', 1), ('XSLT', 2), ('MUMPS', 1), ('bash', 1), ('DarkBASIC', 1), ('SGML', 1), ('XAML', 2), ('VB', 8), ('Curl', 1), ('Schema', 2), ('MATLAB', 1), ('MathML', 2), ('Lua', 1), ('Net', 1), ('ObjectiveC', 1), ('JavaScript', 1), ('Java', 1), ('Io', 1), ('Free', 2), ('Delphi', 1), ('sed', 1), ('XML', 2), ('Forth', 1), ('C#', 1), ('SQLPLSQL', 1), ('QBASIC', 1), ('DMDScript', 1), ('Swift', 1), ('Scala', 1), ('PLI', 1)])

最后直接代入进去就行了:

1 tags = make_tags(counts, maxsize=120)
2 
3 create_tag_image(tags, 'cloud_large.png', size=(900, 600), fontname='Lobster')

具体的修正需要自己慢慢去琢磨了,比如文字大小、图片大小、背景颜色等等。

到这里标签云是算完成了的,但是却是不支持中文,原因是没有合适的ttf字体文件,准备一个 ttf 中文字体,如MicrosoftYaHei.ttf ,将其移动到

# C:\Python34\Lib\site-packages\pytagcloud\fonts

接着就是更改fonts.json文件,按照样式添加类似于css的东西:

{
        "name": "MicrosoftYaHei",
        "ttf": "MicrosoftYaHei.ttf",
        "web": "none"
    }

注意前后的逗号就行。最后将这里的代码改一下:

create_tag_image(tags, 'cloud_large.png', size=(900, 600), fontname='MicrosoftYaHei')

运行,搞定!中文效果图:

我的在github里面,可以去下载看看。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏菲宇

zabbix通过python脚本发告警邮件

python脚本为敏捷开发脚本,在zabbix监控也起到重要作用,以下是使用python脚本发送告警邮件配置方法。

12410
来自专栏菲宇

django-simple-captcha 验证码插件

加入url(r'^captcha/', include('captcha.urls')),

15920
来自专栏祝威廉

为 Delta 新增 Upsert(Merge)功能

今天花了一早上以及午休时间,终于把delta的Upsert功能做完了。加上上周周四做的Delta Compaction支持,我想要的功能基本就都有了。

15040
来自专栏菲宇

python之反射

python中的反射功能是由以下四个内置函数提供:hasattr、getattr、setattr、delattr,改四个函数分别用于对对象内部执行:检查是否含有...

17320
来自专栏AI人工智能

简单易懂最常用的Python图像处理库

当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中...

37520
来自专栏菲宇

Django中Celery的定时任务集群部署(三)

Django中Celery的使用,本章主机要介绍celery定时任务部署多台主机,不同主机定时任务不同,统一通过django后台管理

21820
来自专栏菲宇

Django中Celery的实现介绍(一)

Celery是基于Python开发的一个分布式任务队列框架,支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度。

45420
来自专栏菲宇

CentOS7.0+OpenStack+kvm云平台部署—配置Horizon

[root@openstack~]# yum -y install openstack-dashboard

12020
来自专栏未闻Code

一日一技:包含非hashable元素的列表如何去重并保持顺序?

如果是一个包含数字的列表,我们要对它进行去重同时保持剩余数据的顺序,可以使用集合来实现:

10930
来自专栏菲宇

Django中Celery的使用(二)

CELERY_IMPORTS这个引用自己定义的任务,本文是设置在app名为monitor_agent的my_celery下的tasks.py

20230

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励