专栏首页AI研习社Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议

Github项目推荐 | 深度学习资源,包括一系列架构、模型与建议

项目地址:https://github.com/rasbt/deeplearning-models

Jupyter笔记本中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。

传统机器学习

  • 感知机 Perceptron [TensorFlow 1] [PyTorch]
  • 逻辑回归 Logistic Regression [TensorFlow 1] [PyTorch]
  • Softmax回归(多项逻辑回归) Softmax Regression (Multinomial Logistic Regression) [TensorFlow 1] [PyTorch]

多层感知机

  • Multilayer Perceptron [TensorFlow 1] [PyTorch]
  • Multilayer Perceptron with Dropout [TensorFlow 1] [PyTorch]
  • Multilayer Perceptron with Batch Normalization [TensorFlow 1] [PyTorch]
  • Multilayer Perceptron with Backpropagation from Scratch [TensorFlow 1] [PyTorch]

卷积神经网络

基本

  • Convolutional Neural Network [TensorFlow 1] [PyTorch]
  • Convolutional Neural Network with He Initialization [PyTorch]

概念

  • Replacing Fully-Connnected by Equivalent Convolutional Layers [PyTorch]

完全卷积

  • Fully Convolutional Neural Network [PyTorch]

AlexNet

  • AlexNet on CIFAR-10 [PyTorch]

VGG

  • Convolutional Neural Network VGG-16 [TensorFlow 1] [PyTorch]
  • VGG-16 Gender Classifier Trained on CelebA [PyTorch]
  • Convolutional Neural Network VGG-19 [PyTorch]

ResNet

  • ResNet and Residual Blocks [PyTorch]
  • ResNet-18 Digit Classifier Trained on MNIST [PyTorch]
  • ResNet-18 Gender Classifier Trained on CelebA [PyTorch]
  • ResNet-34 Digit Classifier Trained on MNIST [PyTorch]
  • ResNet-34 Gender Classifier Trained on CelebA [PyTorch]
  • ResNet-50 Digit Classifier Trained on MNIST [PyTorch]
  • ResNet-50 Gender Classifier Trained on CelebA [PyTorch]
  • ResNet-101 Gender Classifier Trained on CelebA [PyTorch]
  • ResNet-152 Gender Classifier Trained on CelebA [PyTorch]

Network in Network

  • Network in Network CIFAR-10 Classifier [PyTorch]

度量学习

  • Siamese Network with Multilayer Perceptrons [TensorFlow 1]

自编码器

完全连接的自编码器

  • Autoencoder [TensorFlow 1] [PyTorch]

卷积自编码器

  • Convolutional Autoencoder with Deconvolutions / Transposed Convolutions[TensorFlow 1] [PyTorch]
  • Convolutional Autoencoder with Deconvolutions (without pooling operations) [PyTorch]
  • Convolutional Autoencoder with Nearest-neighbor Interpolation [TensorFlow 1] [PyTorch]
  • Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on CelebA [PyTorch]
  • Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on Quickdraw [PyTorch]

变分自编码器

  • Variational Autoencoder [PyTorch]
  • Convolutional Variational Autoencoder [PyTorch]

条件变分自编码器

  • Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]
  • Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]
  • Convolutional Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]
  • Convolutional Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

生成对抗网络(GAN)

  • Fully Connected GAN on MNIST [TensorFlow 1] [PyTorch]
  • Convolutional GAN on MNIST [TensorFlow 1] [PyTorch]
  • Convolutional GAN on MNIST with Label Smoothing [PyTorch]

递归神经网络(RNN)

多对一:情感分析/分类

  • A simple single-layer RNN (IMDB) [PyTorch]
  • A simple single-layer RNN with packed sequences to ignore padding characters (IMDB) [PyTorch]
  • RNN with LSTM cells (IMDB) [PyTorch]
  • RNN with LSTM cells (IMDB) and pre-trained GloVe word vectors [PyTorch]
  • RNN with LSTM cells and Own Dataset in CSV Format (IMDB) [PyTorch]
  • RNN with GRU cells (IMDB) [PyTorch]
  • Multilayer bi-directional RNN (IMDB) [PyTorch]

多对多/序列到序列

  • A simple character RNN to generate new text (Charles Dickens) [PyTorch]

顺序回归

  • Ordinal Regression CNN -- CORAL w. ResNet34 on AFAD-Lite [PyTorch]
  • Ordinal Regression CNN -- Niu et al. 2016 w. ResNet34 on AFAD-Lite [PyTorch]
  • Ordinal Regression CNN -- Beckham and Pal 2016 w. ResNet34 on AFAD-Lite [PyTorch]

技巧和窍门

  • Cyclical Learning Rate [PyTorch]

PyTorch工作流程和机制

自定义数据集

  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- CSV files converted to HDF5 [PyTorch]
  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Face Images from CelebA [PyTorch]
  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from Quickdraw [PyTorch]
  • Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from the Street View House Number (SVHN) Dataset [PyTorch]

训练和预处理

  • Dataloading with Pinned Memory [PyTorch]
  • Standardizing Images [PyTorch]
  • Image Transformation Examples [PyTorch]
  • Char-RNN with Own Text File [PyTorch]
  • Sentiment Classification RNN with Own CSV File [PyTorch]

并行计算

  • Using Multiple GPUs with DataParallel -- VGG-16 Gender Classifier on CelebA [PyTorch]

其他

  • Sequential API and hooks [PyTorch]
  • Weight Sharing Within a Layer [PyTorch]
  • Plotting Live Training Performance in Jupyter Notebooks with just Matplotlib [PyTorch]

Autograd

  • Getting Gradients of an Intermediate Variable in PyTorch [PyTorch]

TensorFlow工作流程和机制

自定义数据集

  • Chunking an Image Dataset for Minibatch Training using NumPy NPZ Archives [TensorFlow 1]
  • Storing an Image Dataset for Minibatch Training using HDF5 [TensorFlow 1]
  • Using Input Pipelines to Read Data from TFRecords Files [TensorFlow 1]
  • Using Queue Runners to Feed Images Directly from Disk [TensorFlow 1]
  • Using TensorFlow's Dataset API [TensorFlow 1]

训练和预处理

  • Saving and Loading Trained Models -- from TensorFlow Checkpoint Files and NumPy NPZ Archives [TensorFlow 1]

本文分享自微信公众号 - AI研习社(okweiwu),作者:AI研习社

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-07-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • PyTorch 团队发表周年感言:感谢日益壮大的社群,这一年迎来六大核心突破

    2017 年 1 月,Facebook 开源 PyTorch,短短一年时间,PyTorch 便发展成一线开发者争相使用的工具。这一年间,有哪些研究人员对 PyT...

    AI研习社
  • PyTorch vs. TensorFlow月度使用体验总结

    日前,英伟达深度学习项目实习生Dominic Monn在medium上发文总结了他使用PyTorch和TensorFlow的一些体会,在文章中,他从安装、使用、...

    AI研习社
  • PyTorch 重大更新,0.4.0 版本支持 Windows 系统

    AI 研习社最新消息,PyTorch 官方发布 0.4.0 版本,该版本的 PyTorch 有多项重大更新,其中最重要的改进是支持 Window 系统。

    AI研习社
  • PyTorch 1.0 正式版发布了!

    GitHub 地址:https://github.com/pytorch/pytorch/releases/tag/v1.0.0

    昱良
  • Pytorch还是Tensorflow?英伟达工程师帮你总结了

    用户1737318
  • 预学无门?一份超赞的PyTorch 资源清单,已翻译成中文版!

    在被华为的面试官吊锤之后,我深刻明白入门和入行的差距了,入门可能只是别人说的一些概念你能有了解了,而入行则是我交代的任务你能完成。当然认识到问题之后,还是需要...

    AI算法与图像处理
  • 超赞的PyTorch资源大列表,GitHub标星9k+,中文版也上线了

    自 2017 年 1 月 PyTorch 推出以来,其热度持续上升。PyTorch 能在短时间内被众多研究人员和工程师接受并推崇是因为其有着诸多优点,如采用 P...

    AI科技大本营
  • OpenAI全面拥抱PyTorch,TensorFlow:我哪里比不上它?

    对于深度学习框架的使用,整个人工智能社区大体可以分为两大阵营:TensorFlow 和 PyTorch。有观点认为,PyTorch 更适合研究领域,而实际的工业...

    机器之心
  • PyTorch 官方教程发布,惊人的通俗易懂!

    PyTorch 如今已经称为最受欢迎的深度学习框架之一了!2019年1月到6月底,在arXiv.org上发表的论文中,提及TensorFlow和PyTorch的...

    AI算法与图像处理
  • PyTorch专栏(一)

    【磐创AI导读】:本篇文章讲解了PyTorch专栏的第一章,简单介绍了PyTorch及其环境搭建,希望对大家有所帮助。查看上篇关于本专栏的介绍:PyTorch专...

    磐创AI

扫码关注云+社区

领取腾讯云代金券