在如今的电商项目中,随着业务系统的数据量日益增大,数据存储能力逐渐成为影响系统性能的瓶颈。而关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。
数据库分布式核心内容无非就是数据切分,以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。
数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分
垂直切分常见有垂直分库和垂直分表两种。
垂直分库就是根据业务耦合性,将关联度低的不同表存储在不同的数据库。做法与大系统拆分为多个小系统类似,按业务分类进行独立划分。与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。如图:
垂直分表是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导致跨页,造成额外的性能开销。另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了磁盘IO,从而提升了数据库性能。
垂直切分的优点:
缺点:
当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。
水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示:
库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决。
水平切分的优点:
缺点:
水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。几种典型的数据分片规则为:
按照时间区间或ID区间来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;将userId为1~9999的记录分到第一个库,10000~20000的分到第二个库,以此类推。某种意义上,某些系统中使用的"冷热数据分离",将一些使用较少的历史数据迁移到其他库中,业务功能上只提供热点数据的查询,也是类似的实践。
这样的优点在于:
缺点:
一般采用hash取模mod的切分方式,例如:将 Customer 表根据 cusno 字段切分到4个库中,余数为0的放到第一个库,余数为1的放到第二个库,以此类推。这样同一个用户的数据会分散到同一个库中,如果查询条件带有cusno字段,则可明确定位到相应库去查询。
优点:
缺点:
当更新内容同时分布在不同库中,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用"XA协议"和"两阶段提交"处理。
分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间。导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。
2,最终一致性
对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。与事务在执行中发生错误后立即回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等等。事务补偿还要结合业务系统来考虑。
二、跨节点关联查询 join 问题
切分之前,系统中很多列表和详情页所需的数据可以通过sql join来完成。而切分之后,数据可能分布在不同的节点上,此时join带来的问题就比较麻烦了,考虑到性能,尽量避免使用join查询。
解决这个问题的一些方法:
全局表,也可看做是"数据字典表",就是系统中所有模块都可能依赖的一些表,为了避免跨库join查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少会进行修改,所以也不担心一致性的问题。
一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如:订单表保存userId时候,也将userName冗余保存一份,这样查询订单详情时就不需要再去查询"买家user表"了。
但这种方法适用场景也有限,比较适用于依赖字段比较少的情况。而冗余字段的数据一致性也较难保证,就像上面订单表的例子,买家修改了userName后,是否需要在历史订单中同步更新呢?这也要结合实际业务场景进行考虑。
在系统层面,分两次查询,第一次查询的结果集中找出关联数据id,然后根据id发起第二次请求得到关联数据。最后将获得到的数据进行字段拼装。
关系型数据库中,如果可以先确定表之间的关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能较好的避免跨分片join问题。在1:1或1:n的情况下,通常按照主表的ID主键切分。如下图所示:
这样一来,Data Node1上面的order订单表与orderdetail订单详情表就可以通过orderId进行局部的关联查询了,Data Node2上也一样。
跨节点多库进行查询时,会出现limit分页、order by排序等问题。分页需要按照指定字段进行排序,当排序字段就是分片字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂了。需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序,最终返回给用户。如图所示:
上图中只是取第一页的数据,对性能影响还不是很大。但是如果取得页数很大,情况则变得复杂很多,因为各分片节点中的数据可能是随机的,为了排序的准确性,需要将所有节点的前N页数据都排序好做合并,最后再进行整体的排序,这样的操作时很耗费CPU和内存资源的,所以页数越大,系统的性能也会越差。
在使用Max、Min、Sum、Count之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总和再次计算,最终将结果返回。如图所示:
在分库分表环境中,由于表中数据同时存在不同数据库中,主键值平时使用的自增长将无用武之地,某个分区数据库自生成的ID无法保证全局唯一。因此需要单独设计全局主键,以避免跨库主键重复问题。有一些常见的主键生成策略:
UUID标准形式包含32个16进制数字,分为5段,形式为8-4-4-4-12的36个字符,例如:550e8400-e29b-41d4-a716-446655440000
UUID是主键是最简单的方案,本地生成,性能高,没有网络耗时。但缺点也很明显,由于UUID非常长,会占用大量的存储空间;另外,作为主键建立索引和基于索引进行查询时都会存在性能问题,在InnoDB下,UUID的无序性会引起数据位置频繁变动,导致分页。
在数据库中建立 sequence 表:
CREATE TABLE `sequence` (
`id` bigint(20) unsigned NOT NULL auto_increment,
`stub` char(1) NOT NULL default '',
PRIMARY KEY (`id`),
UNIQUE KEY `stub` (`stub`)
) ENGINE=MyISAM;
stub字段设置为唯一索引,同一stub值在sequence表中只有一条记录,可以同时为多张表生成全局ID。sequence表的内容,如下所示:
+-------------------+------+
| id | stub |
+-------------------+------+
| 72157623227190423 | a |
+-------------------+------+
使用 MyISAM 存储引擎而不是 InnoDB,以获取更高的性能。MyISAM使用的是表级别的锁,对表的读写是串行的,所以不用担心在并发时两次读取同一个ID值。
当需要全局唯一的64位ID时,执行:
REPLACE INTO sequence (stub) VALUES ('a');
SELECT LAST_INSERT_ID();
这两条语句是Connection级别的,select last_insert_id() 必须与 replace into 在同一数据库连接下才能得到刚刚插入的新ID。
使用replace into代替insert into好处是避免了表行数过大,不需要另外定期清理。
Twitter的snowflake算法解决了分布式系统生成全局ID的需求,生成64位的Long型数字,组成部分:
这样的好处是:毫秒数在高位,生成的ID整体上按时间趋势递增;不依赖第三方系统,稳定性和效率较高,理论上QPS约为409.6w/s(1000*2^12),并且整个分布式系统内不会产生ID碰撞;可根据自身业务灵活分配bit位。
不足就在于:强依赖机器时钟,如果时钟回拨,则可能导致生成ID重复。
当业务高速发展,面临性能和存储的瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据迁移的问题。一般做法是先读出历史数据,然后按指定的分片规则再将数据写入到各个分片节点中。此外还需要根据当前的数据量和QPS,以及业务发展的速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片上的单表数据量不超过1000W)
如果采用数值范围分片,只需要添加节点就可以进行扩容了,不需要对分片数据迁移。如果采用的是数值取模分片,则考虑后期的扩容问题就相对比较麻烦。
推荐阅读: