概述 | 点云数据处理方法都有哪些?

点云数据处理方法概述

ICP点云配准就是我们非常熟悉的点云处理算法之一。实际上点云数据在形状检测和分类、立体视觉、运动恢复结构、多视图重建中都有广泛的使用。点云的存储、压缩、渲染等问题也是研究的热点。随着点云采集设备的普及、双目立体视觉技术、VR和AR的发展,点云数据处理技术正成为最有前景的技术之一。PCL是三维点云数据处理领域必备的工具和基本技能,这篇文章也将粗略介绍。

三维点云数据处理技术

1. 点云滤波(数据预处理)

点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。

点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。

2. 点云关键点

我们都知道在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,这种特征点的思想可以推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术。

常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D

这些算法在PCL库中都有实现,其中NARF算法是博主见过用的比较多的。

3. 特征和特征描述

如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。

常用的特征描述算法有:法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。

PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。这里不提供具体描述了,具体细节去谷歌吧。

4. 点云配准

点云配准的概念也可以类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对其,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。

常用的点云配准算法有两种:正太分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下:

ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP

NDT 3D、Multil-Layer NDT

FPCS、KFPSC、SAC-IA

Line Segment Matching、ICL

5. 点云分割与分类

点云的分割与分类也算是一个大Topic了,这里因为多了一维就和二维图像比多了许多问题,点云分割又分为区域提取、线面提取、语义分割与聚类等。同样是分割问题,点云分割涉及面太广,确实是三言两语说不清楚的。只有从字面意思去理解了,遇到具体问题再具体归类。一般说来,点云分割是目标识别的基础。

分割:区域声场、Ransac线面提取、NDT-RANSAC、K-Means、Normalize Cut、3D Hough Transform(线面提取)、连通分析

分类:基于点的分类,基于分割的分类,监督分类与非监督分类

6. SLAM图优化

SLAM又是大Topic,SLAM技术中,在图像前端主要获取点云数据,而在后端优化主要就是依靠图优化工具。而SLAM技术近年来的发展也已经改变了这种技术策略。在过去的经典策略中,为了求解LandMark和Location,将它转化为一个稀疏图的优化,常常使用g2o工具来进行图优化。下面是一些常用的工具和方法。

g2o、LUM、ELCH、Toro、SPA

SLAM方法:ICP、MBICP、IDC、likehood Field、 Cross Correlation、NDT

7. 目标识别检索

这是点云数据处理中一个偏应用层面的问题,简单说来就是Hausdorff距离常被用来进行深度图的目标识别和检索,现在很多三维人脸识别都是用这种技术来做的。

8. 变化检测

当无序点云在连续变化中,八叉树算法常常被用于检测变化,这种算法需要和关键点提取技术结合起来,八叉树算法也算是经典中的经典了。

9. 三维重建

我们获取到的点云数据都是一个个孤立的点,如何从一个个孤立的点得到整个曲面呢,这就是三维重建的topic。

在玩kinectFusion时候,如果我们不懂,会发现曲面渐渐变平缓,这就是重建算法不断迭代的效果。我们采集到的点云是充满噪声和孤立点的,三维重建算法为了重构出曲面,常常要应对这种噪声,获得看上去很舒服的曲面。

常用的三维重建算法和技术有:

泊松重建、Delauary triangulatoins

表面重建,人体重建,建筑物重建,输入重建

实时重建:重建纸杯或者龙作物4D生长台式,人体姿势识别,表情识别

10. 点云数据管理

点云压缩,点云索引(KDtree、Octree),点云LOD(金字塔),海量点云的渲染

PCL库简介

点云数据处理中,不仅涉及前段数据的输入,中间数据和处理,还涉及到后端点云的渲染显示,如果这些函数都要我们亲自来实现,那么开发效率必然受到极大影响。在点云数据处理领域,有一个不可或缺的助手:PCL (Point Cloud Library)。PCL在点云数据处理中的地位犹如OpenCV在图像处理领域的地位,如果你接触三维点云数据处理,那么PCL将大大简化你的开发。

声明:本文系网络转载,版权归原。如涉版权,请联系删!

本文分享自微信公众号 - 智能算法(AI_Algorithm)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-06-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏音视频技术

性能可期——Netflix与Intel优化SVT-AV1

文 / AndreyNorkin, Joel Sole, Kyle Swanson, Mariana Afonso, Anush Moorthy, Anne A...

15330
来自专栏大龄程序员的人工智能之路

AI会让AI工程师失业吗?

自从AI出现之后,人类对于AI的担忧就从来没有消停过,特别是AlphaGo的横空出世将AI带到大众跟前,对AI的争论就更加激烈。对于普通大众而言,AI是否会毁灭...

10620
来自专栏音视频技术

李磊:从底层研发“敦煌”让我受益匪浅

LiveVideoStack:李磊你好,简单介绍下自己的工作经历,以及在美摄负责的工作内容和专注的领域。

6130
来自专栏腾讯音视频实验室

携手北京大学、大疆创新,腾讯音视频实验室点云编码技术需求被AVS采纳

2019年6月12日至15日于成都召开的数字音视频编解码技术标准工作组(简称AVS工作组)第六十九次会议上,由腾讯和鹏城实验室联合提案的M4808 AVS点云...

17130
来自专栏大龄程序员的人工智能之路

提高模型准确率:组合模型

各位朋友,新年好! 随着春节假期的结束,想必大家陆陆续续返回工作岗位,开始新的一年的拼搏。我也会继续努力,争取在深度学习方面更进一步,接下来,我将继续聊一聊深度...

8020
来自专栏腾讯社交用户体验设计

3D企鹅萌弹表情包发布!

? 腾讯ISUX isux.tencent.com 社交用户体验设计 ? ? ? 如今,移动端通讯软件已成为我们日常生活沟通的主要工具,用户往往通过表情包有...

11120
来自专栏程序员小王

Python数据分析之Matplotlib

今天给大家介绍三剑客之一Matplotlib的使用。首先简单介绍用Matplotlib绘制2D和3D图表,具体的方法和属性并没有过多介绍,但是代码中都做了响应的...

16420
来自专栏宜信技术实践

程序员笔记——通过OpenGL理解前端渲染原理(1)

OpenGL,是一套绘制3D图形的API,当然它也可以用来绘制2D的物体。OpenGL有一大套可以用来操作模型和图片的函数,通常编写OpenGL库的人是显卡的制...

13230
来自专栏机器之心

逼真3D人脸动画等,德国马普所三篇CVPR 2019论文推荐

论文 1:Capture, Learning, and Synthesis of 3D Speaking Styles

20430
来自专栏音视频技术

全面拥抱HDR时机已到?

文 / Kennet Eriksson, Björn Isakson and Kojo Mihic

12730

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励