专栏首页深度学习和计算机视觉【OpenCV教程】core 模块 - Mat - 基本图像容器

【OpenCV教程】core 模块 - Mat - 基本图像容器

今天,小白为大家带来OpenCV教程,关于core模块中,Mat基本图像容器的处理的第一部分:Mat基本图像容器的目的、Mat是什么以及存储的方法。

目的:

从真实世界中获取数字图像有很多方法,比如数码相机、扫描仪、CT或者磁共振成像。无论哪种方法,我们(人类)看到的是图像,而让数字设备来“看“的时候,都是在记录图像中的每一个点的数值。

比如上面的图像,在标出的镜子区域中你见到的只是一个矩阵,该矩阵包含了所有像素点的强度值。如何获取并存储这些像素值由我们的需求而定,最终在计算机世界里所有图像都可以简化为数值矩以及矩阵信息。作为一个计算机视觉库, OpenCV其主要目的就是通过处理和操作这些信息,来获取更高级的信息。因此,你首先要学习的是如何利用OpenCV存储并操作图像。

Mat:

在2001年刚刚出现的时候,OpenCV基于C语言接口而建。为了在内存(memory)中存放图像,当时采用名为IpImage的C语言结构体,时至今日这仍出现在大多数的旧版教程和教学材料。但这种方法必须接受C语言所有的不足,这其中最大的不足要数手动内存管理,其依据是用户要为开辟和销毁内存负责。虽然对于小型的程序来说手动管理内存不是问题,但一旦代码开始变得越来越庞大,就需要越来越多地纠缠于这个问题,而不是着力解决你的开发目标。

幸运的是,C++出现了,并且带来类的概念,这给用户带来另外一个选择:自动的内存管理(不严谨地说)。这是一个好消息,如果C++完全兼容C的话,这个变化不会带来兼容性问题。为此,OpenCV在2.0版本中引入了一个新的C++接口,利用自动内存管理给出了解决问题的新方法。使用这个方法,你不需要纠结在管理内存上,而且你的代码会变得简洁(少写多得)。但C++接口唯一的不足是当前许多嵌入式开发系统只支持C语言。所以,当目标不是这种开发平台时,没有必要使用 方法(除非你是自找麻烦的受虐狂码农)。

关于Mat,首先要知道的是你不必再手动地为其开辟空间,在不需要时立即将空间释放。但手动地做还是可以的:大多数OpenCV函数仍会手动地为输出数据开辟空间。当传递一个已经存在的Mat对象时,开辟好的矩阵空间会被重用。也就是说,我们每次都使用大小正好的内存来完成任务。

基本上讲Mat是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同矩阵可以是不同的维数)的指针。矩阵头的尺寸是常数值,但矩阵本身的尺寸会依图像的不同而不同,通常比矩阵头的尺寸大数个数量级。因此,当在程序中传递图像并创建拷贝时,大的开销是由矩阵造成的,而不是信息头。OpenCV是一个图像处理库,囊括了大量的图像处理函数,为了解决问题通常要使用库中的多个函数,因此在函数中传递图像是家常便饭。同时不要忘了我们正在讨论的是计算量很大的图像处理算法,因此,除非万不得已,我们不应该拷贝大的图像,因为这会降低程序速度。

为了解决这个问题,OpenCV使用引用计数机制。其思路是让每个Mat对象有自己的信息头,但共享同一个矩阵。这通过让矩阵指针指向同一地址而实现。而拷贝构造函数则只拷贝信息头和矩阵指针 ,而不拷贝矩阵。

Mat A, C;                                 // 只创建信息头部分
A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // 这里为矩阵开辟内存
Mat B(A);                                 // 使用拷贝构造函数
C = A;                                    // 赋值运算符

以上代码中的所有Mat对象最终都指向同一个也是唯一一个数据矩阵。虽然它们的信息头不同,但通过任何一个对象所做的改变也会影响其它对象。实际上,不同的对象只是访问相同数据的不同途径而已。这里还要提及一个比较棒的功能:你可以创建只引用部分数据的信息头。比如想要创建一个感兴趣区域(ROI),你只需要创建包含边界信息的信息头:

Mat D (A, Rect(10, 10, 100, 100) ); // using a rectangle
Mat E = A(Range:all(), Range(1,3)); // using row and column boundaries

现在你也许会问,如果矩阵属于多个Mat对象,那么当不再需要它时谁来负责清理?简单的回答是:最后一个使用它的对象。通过引用计数机制来实现。无论什么时候有人拷贝了一个Mat对象的信息头,都会增加矩阵的引用次数;反之当一个头被释放之后,这个计数被减一;当计数值为零,矩阵会被清理。但某些时候你仍会想拷贝矩阵本身(不只是信息头和矩阵指针),这时可以使用函数 clone( )或者 copyTo( ) 。

Mat F = A.clone();
Mat G;
A.copyTo(G);

现在改变 F或者G 就不会影响Mat信息头所指向的矩阵。

小白将其总结为以下四点:

1. OpenCV函数中输出图像的内存分配是自动完成的(如果不特别指定的话)。

2. 使用OpenCV的C++接口时不需要考虑内存释放问题。

3. 赋值运算符和拷贝构造函数(ctor)只拷贝信息头。

4. 使用函数 clone( )或者 copyTo( )来拷贝一副图像的矩阵。

存储方法:

这里讲述如何存储像素值。需要指定颜色空间和数据类型。颜色空间是指对一个给定的颜色,如何组合颜色元素以对其编码。最简单的颜色空间要属灰度级空间,只处理黑色和白色,对它们进行组合可以产生不同程度的灰色。

对于 彩色 方式则有更多种类的颜色空间,但不论哪种方式都是把颜色分成三个或者四个基元素,通过组合基元素可以产生所有的颜色。RGB颜色空间是最常用的一种颜色空间,这归功于它也是人眼内部构成颜色的方式。它的基色是红色、绿色和蓝色,有时为了表示透明颜色也会加入第四个元素 alpha (A)。

有很多的颜色系统,各有自身优势:

  • RGB是最常见的,这是因为人眼采用相似的工作机制,它也被显示设备所采用。
  • HSV和HLS把颜色分解成色调、饱和度和亮度/明度。这是描述颜色更自然的方式,比如可以通过抛弃最后一个元素,使算法对输入图像的光照条件不敏感。
  • YCrCb在JPEG图像格式中广泛使用。
  • CIE L*a*b*是一种在感知上均匀的颜色空间,它适合用来度量两个颜色之间的距离。

每个组成元素都有其自己的定义域,取决于其数据类型。如何存储一个元素决定了我们在其定义域上能够控制的精度。最小的数据类型是 char ,占一个字节或者8位,可以是有符号型(0到255之间)或无符号型(-127到+127之间)。尽管使用三个char型元素已经可以表示1600万种可能的颜色(使用RGB颜色空间),但若使用float(4字节,32位)或double(8字节,64位)则能给出更加精细的颜色分辨能力。但同时也要切记增加元素的尺寸也会增加了图像所占的内存空间。

今天小白给大家带来的分享就到这里了,下期将为大家带来Mat的更多运用,请继续关注小白学视觉。

往期文章一览

1、如何透彻的理解一个计算机视觉的知识点?

2、多相机视觉系统的坐标系统标定与统一及其应用

3、用Python+OpenCV实现猜词游戏

4、还在苦于垃圾分类?机器视觉帮你识别它是什么垃圾!!!

5、OpenCV4.0实现人脸识别

6、基于内容的图像检索技术综述-传统经典方法

7、为什么不建议你入门计算机视觉

8、机器视觉检测系统中这些参数你都知道么?

本文分享自微信公众号 - 小白学视觉(NoobCV),作者:小白

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-07-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【从零学习OpenCV 4】Mat类介绍

    经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社...

    小白学视觉
  • 【从零学习OpenCV 4】图像修复

    在实际应用或者工程中,图像常常会收到噪声的干扰,例如在拍照时镜头上存在灰尘或者飞行的小动物,这些干扰会导致拍摄到的图像出现部分内容被遮挡的情况。对于较为久远的图...

    小白学视觉
  • 高翔Slambook第七讲代码解读(3d-2d位姿估计)

    上回咱们读完了pose_estimation_2d2d.cpp这个文件,基本上明白了通过对极几何计算相机位姿变换的过程,简单地说就是:你给我两帧图像,我给你算个...

    小白学视觉
  • 深入MongoDB4.2新特性:字段级加密

    作为使用过MySQL或者之前MongoDB数据库的同学,应该很容易理解,绝大部分的电商、银行、社交平台的数据库敏感字段都会考虑加密处理。例如:支付宝、微信、微博...

    MongoDB中文社区
  • Lombok使用与原理

    Lombok使用与原理 1. Lombok简介 首先 Lombok是一款Java IDE的应用工具插件,一个可以通过简单的注解形式来帮助我们简化消除一些必须有但...

    aoho求索
  • 5-8~9 webpack 性能优化(1)

    首先,webpack 版本在迭代更新的过程中会做很多的优化。同样的道理, webpack 打包依赖的 node ,npm ,yarn,也应尽可能使用新版本。

    love丁酥酥
  • 【深度知识】RPC原理及以太坊RPC的实现

    Remote Procedure Calls 远程过程调用 (RPC) 是一种协议,就是从一台机器(客户端)上通过参数传递的方式调用另一台机器(服务器)上的一个...

    辉哥
  • OpenCV中图像显示你不知道的编程技巧

    OpenCV 中最常用的一个API函数 imshow 各种编程与应用技巧,是否有你以前一直想的,但是从来没有成功过的操作!

    磐创AI
  • OpenCV中图像显示你不知道的编程技巧

    OpenCV 中最常用的一个API函数 imshow 各种编程与应用技巧,是否有你以前一直想的,但是从来没有成功过的操作!

    OpenCV学堂
  • 保护数据库信息,如何用Go语言+对称密钥做数据加密?

    个人识别信息(PII)是客户告知服务提供商(电子商务、金融服务等)的个人信息。作为服务提供者,他们有责任妥善保管信息。针对PII的攻击可能来自外部,也可能来自服...

    区块链大本营

扫码关注云+社区

领取腾讯云代金券