本文将对Kafka、RabbitMQ、ZeroMQ、RocketMQ、ActiveMQ从17 个方面综合对比作为消息队列使用时的差异。
一、资料文档
二、开发语言
三、支持的协议
四、消息存储
1、Kafka
内存、磁盘、数据库。支持大量堆积。
Kafka的最小存储单元是分区,一个topic包含多个分区,Kafka创建主题时,这些分区会被分配在多个服务器上,通常一个broker一台服务器。
分区首领会均匀地分布在不同的服务器上,分区副本也会均匀的分布在不同的服务器上,确保负载均衡和高可用性,当新的broker加入集群的时候,部分副本会被移动到新的broker上。
根据配置文件中的目录清单,Kafka会把新的分区分配给目录清单里分区数最少的目录。
默认情况下,分区器使用轮询算法把消息均衡地分布在同一个主题的不同分区中,对于发送时指定了key的情况,会根据key的hashcode取模后的值存到对应的分区中。
2、RabbitMQ
内存、磁盘。支持少量堆积。
RabbitMQ的消息分为持久化的消息和非持久化消息,不管是持久化的消息还是非持久化的消息都可以写入到磁盘。
持久化的消息在到达队列时就写入到磁盘,并且如果可以,持久化的消息也会在内存中保存一份备份,这样可以提高一定的性能,当内存吃紧的时候会从内存中清除。
非持久化的消息一般只存在于内存中,在内存吃紧的时候会被换入到磁盘中,以节省内存。
引入镜像队列机制,可将重要队列“复制”到集群中的其他broker上,保证这些队列的消息不会丢失。
配置镜像的队列,都包含一个主节点master和多个从节点slave,如果master失效,加入时间最长的slave会被提升为新的master,除发送消息外的所有动作都向master发送,然后由master将命令执行结果广播给各个slave,RabbitMQ会让master均匀地分布在不同的服务器上,而同一个队列的slave也会均匀地分布在不同的服务器上,保证负载均衡和高可用性。
3、ZeroMQ
消息发送端的内存或者磁盘中。不支持持久化。
4、RocketMQ
磁盘。支持大量堆积。
commitLog文件存放实际的消息数据,每个commitLog上限是1G,满了之后会自动新建一个commitLog文件保存数据。
ConsumeQueue队列只存放offset、size、tagcode,非常小,分布在多个broker上。
ConsumeQueue相当于CommitLog的索引文件,消费者消费时会从consumeQueue中查找消息在commitLog中的offset,再去commitLog中查找元数据。
ConsumeQueue存储格式的特性,保证了写过程的顺序写盘(写CommitLog文件),大量数据IO都在顺序写同一个commitLog,满1G了再写新的。
加上RocketMQ是累计4K才强制从PageCache中刷到磁盘(缓存),所以高并发写性能突出。
5、ActiveMQ
内存、磁盘、数据库。支持少量堆积。
五、消息事务
六、负载均衡
1、Kafka
支持负载均衡。
1)一个broker通常就是一台服务器节点。
对于同一个Topic的不同分区,Kafka会尽力将这些分区分布到不同的Broker服务器上,zookeeper保存了broker、主题和分区的元数据信息。
分区首领会处理来自客户端的生产请求,Kafka分区首领会被分配到不同的broker服务器上,让不同的broker服务器共同分担任务。
每一个broker都缓存了元数据信息,客户端可以从任意一个broker获取元数据信息并缓存起来,根据元数据信息知道要往哪里发送请求。
2)Kafka的消费者组订阅同一个topic,会尽可能地使得每一个消费者分配到相同数量的分区,分摊负载。
3)当消费者加入或者退出消费者组的时候,还会触发再均衡,为每一个消费者重新分配分区,分摊负载。
Kafka的负载均衡大部分是自动完成的,分区的创建也是Kafka完成的,隐藏了很多细节,避免了繁琐的配置和人为疏忽造成的负载问题。
4)发送端由topic和key来决定消息发往哪个分区,如果key为null,那么会使用轮询算法将消息均衡地发送到同一个topic的不同分区中。如果key不为null,那么会根据key的hashcode取模计算出要发往的分区。
2、RabbitMQ
对负载均衡的支持不好。
1)消息被投递到哪个队列是由交换器和key决定的,交换器、路由键、队列都需要手动创建。
RabbitMQ客户端发送消息要和broker建立连接,需要事先知道broker上有哪些交换器,有哪些队列。
通常要声明要发送的目标队列,如果没有目标队列,会在broker上创建一个队列,如果有,就什么都不处理,接着往这个队列发送消息。假设大部分繁重任务的队列都创建在同一个broker上,那么这个broker的负载就会过大。
可以在上线前预先创建队列,无需声明要发送的队列,但是发送时不会尝试创建队列,可能出现找不到队列的问题,RabbitMQ的备份交换器会把找不到队列的消息保存到一个专门的队列中,以便以后查询使用。
使用镜像队列机制建立RabbitMQ集群可以解决这个问题,形成master-slave的架构,master节点会均匀分布在不同的服务器上,让每一台服务器分摊负载。slave节点只是负责转发,在master失效时会选择加入时间最长的slave成为master。
当新节点加入镜像队列的时候,队列中的消息不会同步到新的slave中,除非调用同步命令,但是调用命令后,队列会阻塞,不能在生产环境中调用同步命令。
2)当RabbitMQ队列拥有多个消费者的时候,队列收到的消息将以轮询的分发方式发送给消费者。每条消息只会发送给订阅列表里的一个消费者,不会重复。
这种方式非常适合扩展,而且是专门为并发程序设计的。
如果某些消费者的任务比较繁重,那么可以设置basicQos限制信道上消费者能保持的最大未确认消息的数量,在达到上限时,RabbitMQ不再向这个消费者发送任何消息。
3)对于RabbitMQ而言,客户端与集群建立的TCP连接不是与集群中所有的节点建立连接,而是挑选其中一个节点建立连接。
但是RabbitMQ集群可以借助HAProxy、LVS技术,或者在客户端使用算法实现负载均衡,引入负载均衡之后,各个客户端的连接可以分摊到集群的各个节点之中。
客户端均衡算法:
3、ZeroMQ
去中心化,不支持负载均衡。本身只是一个多线程网络库。
4、RocketMQ
支持负载均衡。
一个broker通常是一个服务器节点,broker分为master和slave,master和slave存储的数据一样,slave从master同步数据。
1)nameserver与每个集群成员保持心跳,保存着Topic-Broker路由信息,同一个topic的队列会分布在不同的服务器上。
2)发送消息通过轮询队列的方式发送,每个队列接收平均的消息量。发送消息指定topic、tags、keys,无法指定投递到哪个队列(没有意义,集群消费和广播消费跟消息存放在哪个队列没有关系)。
3)RocketMQ的负载均衡策略规定:
Consumer数量应该小于等于Queue数量,如果Consumer超过Queue数量,那么多余的Consumer 将不能消费消息。
这一点和Kafka是一致的,RocketMQ会尽可能地为每一个Consumer分配相同数量的队列,分摊负载。
5、ActiveMQ
支持负载均衡。可以基于zookeeper实现负载均衡。
七、集群方式
1、Kafka
天然的‘Leader-Slave’无状态集群,每台服务器既是Master也是Slave。
分区首领均匀地分布在不同的Kafka服务器上,分区副本也均匀地分布在不同的Kafka服务器上,所以每一台Kafka服务器既含有分区首领,同时又含有分区副本。
每一台Kafka服务器是某一台Kafka服务器的Slave,同时也是某一台Kafka服务器的leader。
Kafka的集群依赖于zookeeper,zookeeper支持热扩展,所有的broker、消费者、分区都可以动态加入移除,而无需关闭服务,与不依靠zookeeper集群的mq相比,这是最大的优势。
2、RabbitMQ
支持简单集群,'复制'模式,对高级集群模式支持不好。
RabbitMQ的每一个节点,不管是单一节点系统或者是集群中的一部分,要么是内存节点,要么是磁盘节点,集群中至少要有一个是磁盘节点。
在RabbitMQ集群中创建队列,集群只会在单个节点创建队列进程和完整的队列信息(元数据、状态、内容),而不是在所有节点上创建。
引入镜像队列,可以避免单点故障,确保服务的可用性,但是需要人为地为某些重要的队列配置镜像。
3、ZeroMQ
去中心化,不支持集群。
4、RocketMQ
常用 多对'Master-Slave' 模式,开源版本需手动切换Slave变成Master。
Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master。
Master与Slave的对应关系通过指定相同的BrokerName,不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slave。
Master也可以部署多个。每个Broker与Name Server集群中的所有节点建立长连接,定时注册Topic信息到所有Name Server。
Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。
Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。
客户端先找到NameServer, 然后通过NameServer再找到 Broker。
一个topic有多个队列,这些队列会均匀地分布在不同的broker服务器上。RocketMQ队列的概念和Kafka的分区概念是基本一致的,Kafka同一个topic的分区尽可能地分布在不同的broker上,分区副本也会分布在不同的broker上。
RocketMQ集群的slave会从master拉取数据备份,master分布在不同的broker上。
5、ActiveMQ
支持简单集群模式,比如'主-备',对高级集群模式支持不好。
八、管理界面
九、可用性
十、消息重复
十一、吞吐量TPS
十二、订阅形式和消息分发
1、Kafka
基于topic以及按照topic进行正则匹配的发布订阅模式。
1)发送
发送端由topic和key来决定消息发往哪个分区,如果key为null,那么会使用轮询算法将消息均衡地发送到同一个topic的不同分区中。如果key不为null,那么会根据key的hashcode取模计算出要发往的分区。
2)接收
2、RabbitMQ
提供了4种:direct、topic、Headers和fanout。
1)发送
先要声明一个队列,这个队列会被创建或者已经被创建,队列是基本存储单元。
2)接收
RabbitMQ的队列是基本存储单元,不再被分区或者分片,对于我们已经创建了的队列,消费端要指定从哪一个队列接收消息。
当RabbitMQ队列拥有多个消费者的时候,队列收到的消息将以轮询的分发方式发送给消费者。每条消息只会发送给订阅列表里的一个消费者,不会重复。
这种方式非常适合扩展,而且是专门为并发程序设计的。
如果某些消费者的任务比较繁重,那么可以设置basicQos限制信道上消费者能保持的最大未确认消息的数量,在达到上限时,RabbitMQ不再向这个消费者发送任何消息。
3、ZeroMQ
点对点(p2p)。
4、RocketMQ
基于topic/messageTag以及按照消息类型、属性进行正则匹配的发布订阅模式。
1)发送
发送消息通过轮询队列的方式发送,每个队列接收平均的消息量。发送消息指定topic、tags、keys,无法指定投递到哪个队列(没有意义,集群消费和广播消费跟消息存放在哪个队列没有关系)。
2)接收
5、ActiveMQ
点对点(p2p)、广播(发布-订阅)
1)发送
2)接收
十三、顺序消息
十四、消息确认
1、Kafka
支持。
1)发送方确认机制
2)接收方确认机制
自动或者手动提交分区偏移量,早期版本的Kafka偏移量是提交给Zookeeper的,这样使得zookeeper的压力比较大,更新版本的Kafka的偏移量是提交给Kafka服务器的,不再依赖于zookeeper群组,集群的性能更加稳定。
2、RabbitMQ
支持。
1)发送方确认机制,消息被投递到所有匹配的队列后,返回成功。如果消息和队列是可持久化的,那么在写入磁盘后,返回成功。支持批量确认和异步确认。
2)接收方确认机制,设置autoAck为false,需要显式确认,设置autoAck为true,自动确认。
当autoAck为false的时候,RabbitMQ队列会分成两部分,一部分是等待投递给consumer的消息,一部分是已经投递但是没收到确认的消息。
如果一直没有收到确认信号,并且consumer已经断开连接,RabbitMQ会安排这个消息重新进入队列,投递给原来的消费者或者下一个消费者。
未确认的消息不会有过期时间,如果一直没有确认,并且没有断开连接,RabbitMQ会一直等待,RabbitMQ允许一条消息处理的时间可以很久很久。
3、ZeroMQ
支持。
4、RocketMQ
支持。
5、ActiveMQ
支持。
十五、消息回溯
十六、消息重试
1、Kafka
不支持,但是可以实现。
Kafka支持指定分区offset位置的回溯,可以实现消息重试。
2、RabbitMQ
不支持,但是可以利用消息确认机制实现。
RabbitMQ接收方确认机制,设置autoAck为false。
当autoAck为false的时候,RabbitMQ队列会分成两部分,一部分是等待投递给consumer的消息,一部分是已经投递但是没收到确认的消息。
如果一直没有收到确认信号,并且consumer已经断开连接,RabbitMQ会安排这个消息重新进入队列,投递给原来的消费者或者下一个消费者。
3、ZeroMQ
不支持。
4、RocketMQ
支持。
消息消费失败的大部分场景下,立即重试99%都会失败,所以RocketMQ的策略是在消费失败时定时重试,每次时间间隔相同。
1)发送端的 send 方法本身支持内部重试,重试逻辑如下:
2)接收端。
Consumer 消费消息失败后,要提供一种重试机制,令消息再消费一次。Consumer 消费消息失败通常可以分为以下两种情况:
5、ActiveMQ
不支持。
十七、并发度
1、Kafka
并发度高。
一个线程一个消费者,Kafka限制消费者的个数要小于等于分区数,如果要提高并行度,可以在消费者中再开启多线程,或者增加consumer实例数量。
2、RabbitMQ
并发度极高。本身是用Erlang语言写的,并发性能高。
可在消费者中开启多线程,最常用的做法是一个channel对应一个消费者,每一个线程把持一个channel,多个线程复用connection的tcp连接,减少性能开销。
当RabbitMQ队列拥有多个消费者的时候,队列收到的消息将以轮询的分发方式发送给消费者。每条消息只会发送给订阅列表里的一个消费者,不会重复。
这种方式非常适合扩展,而且是专门为并发程序设计的。
如果某些消费者的任务比较繁重,那么可以设置basicQos限制信道上消费者能保持的最大未确认消息的数量,在达到上限时,RabbitMQ不再向这个消费者发送任何消息。
3、ZeroMQ
并发度高。
4、RocketMQ
并发度高。
1)RocketMQ限制消费者的个数少于等于队列数,但是可以在消费者中再开启多线程,这一点和Kafka是一致的,提高并行度的方法相同。
修改消费并行度方法
2)同一个网络连接connection,客户端多个线程可以同时发送请求,连接会被复用,减少性能开销。
5、ActiveMQ
并发度高。
单个ActiveMQ的接收和消费消息的速度在1万笔/秒(持久化 一般为1-2万, 非持久化 2 万以上),在生产环境中部署10个ActiveMQ就能达到10万笔/秒以上的性能,部署越多的ActiveMQ broker 在MQ上latency也就越低,系统吞吐量也就越高。