专栏首页计算机视觉战队腾讯(优图)新技术的人脸检测

腾讯(优图)新技术的人脸检测

导读】分享的文章,其提出了一种新的人脸检测网络,解决了人脸检测的三个关键方面,包括更好的特征学习、渐进的损失设计和基于锚的数据增强。首先,提出了一种增强原始特征映射的特征增强模块(FEM),将单个镜头探测器扩展到双镜头探测器。其次,采用由两组不同的锚计算的渐进锚损失(PAL)来有效地促进特征。第三,通过将新的锚分配策略集成到数据增强中,使用了改进的锚匹配(IAM),以提供对REGRESOR的更好的初始化。由于这些技术都与双流设计有关,所以将提出的网络命名为双镜头人脸检测器(DSFD)。对流行的基准,WIDER FACE和FDDB进行了广泛实验,证明了DSFD优于现有技术的人脸检测器的优越性。

引言

作为人脸检测的先驱工作,Viola-Jones采用Adaboost算法,具有手工制作的特征,现在已被卷积神经网络(CNN)的深度学习的特征所取代,取得了很大的进步。尽管基于CNN的人脸检测器已经被广泛地研究,但是在真实世界场景中检测具有高度可变性的面部、姿势、遮挡、表情、外观和照明仍然是一个挑战。

现有技术的人脸检测器可以粗略地分成两类,第一个主要是基于Faster RCNN中采用的区域建议网络(RPN),并且采用两级检测方案。RPN是经过训练的端到端,并产生高质量的区域候选,这些候选通过Faster R-CNN探测器进一步完善。另一个是基于单镜头探测器(SSD)的单级方法,该方法摆脱了RPN,直接预测了边界框。

最近,由于较高的推理效率和直接的系统部署,One shot的人脸检测框架引起了更多的关注。具体分析见“计算机视觉协会”知识星球。

Dual Shot Face Detector

DSFD的框架如下图所示。体系结构使用了与Pyramid Box和S3FD相同的扩展VGG16框架,在分类层之前被截断,并添加了一些辅助结构。注意,训练图像的输入尺寸为640,这意味着从最低层到最高层的特征图大小为160到5。不同于S3FD和Pyramid Box,在利用有限元法中的感受野放大和新的锚设计策略后,对于步长、锚和感受野三种尺寸满足等比例间隔原则的情况,都是不必要的。因此,DSFD具有更大的灵活性和鲁棒性。此外,原有的和增强的镜头有两个不同的损失,分别是第一次发射渐进锚损失(FSL)和第二次发射渐进锚损失(SSL)。

特征增强模块

特征增强模块能够对原始特征进行增强,使其具有更强的鉴别性和鲁棒性,简称FEM。

下图就阐述了FPN和RFB提出的有限元思想。在这里,首先使用1×1卷积核来规范特征映射。然后对上面的特征图进行抽样,用当前的特征映射来制作元素级的产品。最后将特征映射分为三个部分,然后是包含不同数目的膨胀卷积层的三个子网络。

实验

特征增强模块的有效性

Progressive Anchor Loss 的有效性

* Progressive Anchor Loss在知识星球有详细讲解。

不同尺度人脸的数目分布

新技术的可视化结果

本文分享自微信公众号 - 计算机视觉战队(ComputerVisionGzq),作者:Edison_G

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-07-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 局部人脸识别的动态特征匹配(文末附文章及源码地址)

    【导读】该文章被Trans收录。无约束环境下的局部人脸识别(PFR)是一项非常重要的任务,尤其是在视频监控和移动设备等由于遮挡、视野外、大视角等原因容易捕捉到局...

    计算机视觉研究院
  • 上海腾讯优图|最新人脸检测技术

    【导读】今天分享的文章,作者主要提出了一种新的人脸检测网络,解决了人脸检测的三个关键方面:包括更好的特征学习、渐进的损失设计和基于锚的数据增强。

    计算机视觉研究院
  • 视频大数据处理的挑战和机遇

    背景: 视频在许多应用中是非常重要的问题,如内容搜索、智能内容识别广告等。现在正处在一个数据爆炸性增长的"大数据"时代,大数据对社会经济、政治、文化,人们生活等...

    计算机视觉研究院
  • 基于随机森林识别特征重要性(翻译)

    博主Slav Ivanov 的文章《Identifying churn drivers with Random Forests 》部分内容翻译。博主有一款自己的...

    三猫
  • "爱(AI)与你同行系列"(1):从哪三个方面入手做好特征选择工程?

    今天我们聊一聊特征工程方面的知识,随着大数据时代的到来,特征工程发挥着越来越重要的作用。当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行...

    double
  • 爱(AI)与你同行系列"(1):从哪三个方面入手做好特征选择工程?

    今天我们聊一聊特征工程方面的知识,随着大数据时代的到来,特征工程发挥着越来越重要的作用。当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行...

    double
  • 特征工程(中)- 特征表达

    从一个完整的机器学习任务来看,在选择完特征之后,特征表达的任务就是要将一个个的样本抽象成数值向量,供机器学习模型使用。因此,特征表达就要兼顾特征属性和模型需求这...

    小萌哥
  • 神盾推荐——离线算法平台

    腾讯QQ大数据
  • 特征工程之特征选择

        特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法...

    刘建平Pinard
  • 一文详解数据归约的四种途径

    数据归约是在保证数据信息量的基础上,尽可能精简数据量。筛选和降维是数据归约的重要手段,尤其在数据量大且维度高的情况下,可以有效地节约存储空间和计算时间。反之,...

    石晓文

扫码关注云+社区

领取腾讯云代金券