首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【AI-1000问】为什么现在大家喜欢用3*3小卷积?

【AI-1000问】为什么现在大家喜欢用3*3小卷积?

作者头像
用户1508658
发布2019-07-25 10:04:06
发布2019-07-25 10:04:06
7400
举报
文章被收录于专栏:有三AI有三AI

点击边框调出视频工具条

为什么现在大家喜欢用3*3小卷积?

我们知道现在在构建CNN时大家喜欢用3*3的卷积,而不是早期的5*5,7*7等更大尺寸的卷积,如vgg系列网络中全部使用了3*3的卷积。那么你知道为什么这样做吗?

作者/编辑 汤兴旺

这里既然用3*3卷积来替代更大尺寸的卷积,那么有一个前提,就是要保证两者具有同样大小的输出和感受野

两个3*3的卷积才能代替一个5*5的卷积;三个3*3的卷积才能代替一个7*7的卷积。

以stride=1,padding=0我们来看看为何。

我们首先看一下采用5*5卷积的方案。

假设图像大小为n*n,采用5*5的卷积核其输出为(n-5)/1+1=n-4。

我们再看一下采用3*3卷积的方案。

同样图像大小为n*n,第一次卷积后输出为(n-3)/1+1=n-2,第二次卷积后输出为(n-2-3)/1+1=n-4。

从上面的图可以看出,采用一个5*5卷积核和两个3*3卷积核,它们卷积后的输出是相同大小,输出的每一个像素的感受野也相等

在这样的前提下,有什么好处呢?

1、网络层数增加了,这增加了网络的非线性表达能力。

2、参数变少了,两个3*3和一个5*5的参数比例为3×3×2/(5×5)=0.72,同样的三个3×3和一个7×7参数比例为3×3×3/(7×7)=0.55,将近一倍的压缩,这可是很大提升。

这就是用3*3卷积带来的最明显的两个优势。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-04-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 有三AI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档