前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OpenCV---HSV颜色空间介绍

OpenCV---HSV颜色空间介绍

作者头像
Vaccae
发布2019-07-25 10:55:49
4.7K0
发布2019-07-25 10:55:49
举报
文章被收录于专栏:微卡智享

前言

在OpenCV中我们有时候提取样本的时候可能会通过颜色来进行提取,那HSV颜色空间在这个时候就可以加以利用上了,本章主要是解决HSV颜色空间(摘自网上文章,在此留用),用于对HSV一个基本的认识了解。

HSV颜色系统简介

HSV是一种在人们生活中甚至更常用的颜色系统,在电视遥控器上、在画画的调色板中、在你用爱某艺视频调整亮度时都很常见,因为它更符合人们描述颜色的方式——是什么颜色、颜色有多深、颜色有多亮。

H——Hue即色相,就是我们平时所说的红、绿,如果你分的更细的话可能还会有洋红、草绿等等;在HSV模型中,用度数来描述色相,其中红色对应0度,绿色对应120度,蓝色对应240度。

S——Saturation即饱和度,色彩的深浅度(0-100%) ,对于一种颜色比如红色,我们可以用浅红——大红——深红——红得发紫等等语言来描述它(请原谅一个纯理科生的匮乏的颜色系统),对应在画水彩的时候即一种颜料加上不同分量的水形成不同的饱和度。

V——Value即色调,纯度,色彩的亮度(0-100%) ,这个在调整屏幕亮度的时候比较常见。

注:在模型2中:

H是色彩点在对应圆形切面上与红色半径(对于H=0度)所形成的圆心角。

V是色彩点所在圆形切面到圆锥顶点的距离。在顶面上V=1 顶点V=0

S是色彩点到所在圆形切面圆心的距离与该圆半径的比例值,在圆锥表面上S=1,在圆心处S=0


HSV值对颜色的影响

如上图是H=120时的S—V平面,S和V值分别从左至右、从下至上由0增大至1。我们可以发现其规律:

  • 在图片的左侧S值为0,呈现不同程度的灰色,由V值决定。
  • 在图片的下侧V值为0,呈现出黑色。
  • 在图片的右上角S和V值都为1,呈现出纯色,其RGB值为(0, 255, 0)。

因此对HSV我们的结论如下:


当S=1 V=1时,H所代表的任何颜色被称为纯色;


当S=0时,即饱和度为0,颜色最浅,最浅被描述为灰色(灰色也有亮度,黑色和白色也属于灰色),灰色的亮度由V决定,此时H无意义;


当V=0时,颜色最暗,最暗被描述为黑色,因此此时H(无论什么颜色最暗都为黑色)和S(无论什么深浅的颜色最暗都为黑色)均无意义。


HSV和RGB的互相转化

RGB➡HSV 1. V = max(R, G, B)/255.0f——亮度V就是RGB值中最大的那个值进行归一化。

推论:

纯色的RGB中肯定有一个是255。同时RGB值也不可能有3个255,因为3个255为白色,白色为对于任何色彩H,V=1而S=0时的产物。而V=1 S=0并不是纯色。同时如果V=0,那么RGB三者中的最大值是0,即GRB都为0,也就是说该像素是黑色。

2. S = (max(R, G, B) - min(R, G, B))/(float)max(R, G, B)——饱和度S是RGB中最大值和最小值的差值与最大值的比值。

推论: 纯色(S=1 V=1)的RGB值中必定有一个0,因为当S=1,max(R, G, B) - min(R, G, B) == max(R, G, B),即RGBMin=0。这也说明了白色(RGB(255,255,255)并不是纯色)。 当S=0时,RGBMax-RGBMin==0,即R==G==B,此时颜色呈不同程度的灰色(由白到黑,亮度由V而定,因为V=RGBMax*100/255,V越高,RGBMax==R==G==B就越高,灰色越亮))。这也可以从上面给出的矩形图看出。 因此对于纯色来说,RGB中必有一个255和一个0。 公式换算:

HSV➡RGB


OpenCV中的HSV颜色体系

与上述HSV颜色系统不同的是,如果直接使用OpenCV中cvtColor函数,并设置参数为CV_BGR2HSV,那么所得的H、S、V值范围分别是[0,180),[0,255),[0,255),而非[0,360],[0,1],[0,1];这时我们可以查下面的表格来确定颜色的大致区间

从输出的结果来看,和我们上边所说的是相符的。

另一种hsv方法——当我们想恢复到我们一开始介绍的体系时,我们只需要加一步——对像素的bgr进行归一化,再转到hsv时得到的结果就和我们介绍的就相同了。代码和输出结果如下

此时输出结果范围和一开始所述就符合了。


-END-

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-02-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 微卡智享 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 在OpenCV中我们有时候提取样本的时候可能会通过颜色来进行提取,那HSV颜色空间在这个时候就可以加以利用上了,本章主要是解决HSV颜色空间(摘自网上文章,在此留用),用于对HSV一个基本的认识了解。
  • S——Saturation即饱和度,色彩的深浅度(0-100%) ,对于一种颜色比如红色,我们可以用浅红——大红——深红——红得发紫等等语言来描述它(请原谅一个纯理科生的匮乏的颜色系统),对应在画水彩的时候即一种颜料加上不同分量的水形成不同的饱和度。
  • V——Value即色调,纯度,色彩的亮度(0-100%) ,这个在调整屏幕亮度的时候比较常见。
  • 注:在模型2中:
  • H是色彩点在对应圆形切面上与红色半径(对于H=0度)所形成的圆心角。
  • V是色彩点所在圆形切面到圆锥顶点的距离。在顶面上V=1 顶点V=0
  • S是色彩点到所在圆形切面圆心的距离与该圆半径的比例值,在圆锥表面上S=1,在圆心处S=0
  • 与上述HSV颜色系统不同的是,如果直接使用OpenCV中cvtColor函数,并设置参数为CV_BGR2HSV,那么所得的H、S、V值范围分别是[0,180),[0,255),[0,255),而非[0,360],[0,1],[0,1];这时我们可以查下面的表格来确定颜色的大致区间
  • 从输出的结果来看,和我们上边所说的是相符的。
  • 另一种hsv方法——当我们想恢复到我们一开始介绍的体系时,我们只需要加一步——对像素的bgr进行归一化,再转到hsv时得到的结果就和我们介绍的就相同了。代码和输出结果如下
  • 此时输出结果范围和一开始所述就符合了。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档