前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用rook编排ceph

使用rook编排ceph

作者头像
sealyun
发布2019-07-25 17:31:01
2.5K0
发布2019-07-25 17:31:01
举报
文章被收录于专栏:sealyun

在k8s上编排ceph是容器生态存储方案的一个趋势,能非常简单快速的构建出存储集群,特别适合供有状态服务使用,计算存储分离将使应用的管理变简单,业务层与云操作系统层也能更好的解耦。

本文中需要用的yaml文件和Dockerfile等都放到这个仓库 包含:rook operator ceph cluster storage class配置,mysql wordpress事例,性能测试fio Dockerfile与yaml等

安装

git clone https://github.com/rook/rookcd cluster/examples/kubernetes/ceph kubectl create -f operator.yaml

查看operator是否成功:

[root@dev-86-201 ~]# kubectl get pod -n rook-ceph-system NAME READY STATUS RESTARTS AGE rook-ceph-agent-5z6p7 1/1 Running 0 88m rook-ceph-agent-6rj7l 1/1 Running 0 88m rook-ceph-agent-8qfpj 1/1 Running 0 88m rook-ceph-agent-xbhzh 1/1 Running 0 88m rook-ceph-operator-67f4b8f67d-tsnf2 1/1 Running 0 88m rook-discover-5wghx 1/1 Running 0 88m rook-discover-lhwvf 1/1 Running 0 88m rook-discover-nl5m2 1/1 Running 0 88m rook-discover-qmbx7 1/1 Running 0 88m

然后创建ceph集群:

1

kubectl create -f cluster.yaml

查看ceph集群:

[root@dev-86-201 ~]# kubectl get pod -n rook-ceph NAME READY STATUS RESTARTS AGE rook-ceph-mgr-a-8649f78d9b-jklbv 1/1 Running 0 64m rook-ceph-mon-a-5d7fcfb6ff-2wq9l 1/1 Running 0 81m rook-ceph-mon-b-7cfcd567d8-lkqff 1/1 Running 0 80m rook-ceph-mon-d-65cd79df44-66rgz 1/1 Running 0 79m rook-ceph-osd-0-56bd7545bd-5k9xk 1/1 Running 0 63m rook-ceph-osd-1-77f56cd549-7rm4l 1/1 Running 0 63m rook-ceph-osd-2-6cf58ddb6f-wkwp6 1/1 Running 0 63m rook-ceph-osd-3-6f8b78c647-8xjzv 1/1 Running 0 63m

参数说明:

代码语言:javascript
复制
apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
  name: rook-ceph
  namespace: rook-ceph
spec:
  cephVersion:
    # For the latest ceph images, see https://hub.docker.com/r/ceph/ceph/tags
    image: ceph/ceph:v13.2.2-20181023
  dataDirHostPath: /var/lib/rook # 数据盘目录
  mon:
    count: 3
    allowMultiplePerNode: true
  dashboard:
    enabled: true
  storage:
    useAllNodes: true
    useAllDevices: false
    config:
      databaseSizeMB: "1024"
      journalSizeMB: "1024"

访问ceph dashboard:

[root@dev-86-201 ~]# kubectl get svc -n rook-ceph NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE rook-ceph-mgr ClusterIP 10.98.183.33 <none> 9283/TCP 66m rook-ceph-mgr-dashboard NodePort 10.103.84.48 <none> 8443:31631/TCP 66m # 把这个改成NodePort模式 rook-ceph-mon-a ClusterIP 10.99.71.227 <none> 6790/TCP 83m rook-ceph-mon-b ClusterIP 10.110.245.119 <none> 6790/TCP 82m rook-ceph-mon-d ClusterIP 10.101.79.159 <none> 6790/TCP 81m

然后访问https://10.1.86.201:31631 即可

管理账户admin,获取登录密码:

1

kubectl -n rook-ceph get secret rook-ceph-dashboard-password -o yaml | grep "password:" | awk '{print $2}' | base64 --decode

使用

创建pool

代码语言:javascript
复制
apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
  name: replicapool   # operator会监听并创建一个pool,执行完后界面上也能看到对应的pool
  namespace: rook-ceph
spec:
  failureDomain: host
  replicated:
    size: 3
---
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: rook-ceph-block    # 这里创建一个storage class, 在pvc中指定这个storage class即可实现动态创建PV
provisioner: ceph.rook.io/block
parameters:
  blockPool: replicapool
  # The value of "clusterNamespace" MUST be the same as the one in which your rook cluster exist
  clusterNamespace: rook-ceph
  # Specify the filesystem type of the volume. If not specified, it will use `ext4`.
  fstype: xfs
# Optional, default reclaimPolicy is "Delete". Other options are: "Retain", "Recycle" as documented in https://kubernetes.io/docs/concepts/storage/storage-classes/
reclaimPolicy: Retain

创建pvc

在cluster/examples/kubernetes 目录下,官方给了个worldpress的例子,可以直接运行一下:

kubectl create -f mysql.yaml kubectl create -f wordpress.yaml

查看PV PVC:

代码语言:javascript
复制
[root@dev-86-201 ~]# kubectl get pvc
NAME             STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS      AGE
mysql-pv-claim   Bound    pvc-a910f8c2-1ee9-11e9-84fc-becbfc415cde   20Gi       RWO            rook-ceph-block   144m
wp-pv-claim      Bound    pvc-af2dfbd4-1ee9-11e9-84fc-becbfc415cde   20Gi       RWO            rook-ceph-block   144m

[root@dev-86-201 ~]# kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                    STORAGECLASS      REASON   AGE
pvc-a910f8c2-1ee9-11e9-84fc-becbfc415cde   20Gi       RWO            Retain           Bound    default/mysql-pv-claim   rook-ceph-block            145m
pvc-af2dfbd4-1ee9-11e9-84fc-becbfc415cde   20Gi       RWO            Retain           Bound    default/wp-pv-claim      rook-ceph-block 

看下yaml文件:

代码语言:javascript
复制
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mysql-pv-claim
  labels:
    app: wordpress
spec:
  storageClassName: rook-ceph-block   # 指定storage class
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 20Gi  # 需要一个20G的盘

...

        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
      volumes:
      - name: mysql-persistent-storage
        persistentVolumeClaim:
          claimName: mysql-pv-claim  # 指定上面定义的PVC

是不是非常简单。

要访问wordpress的话请把service改成NodePort类型,官方给的是loadbalance类型:

代码语言:javascript
复制
kubectl edit svc wordpress

[root@dev-86-201 kubernetes]# kubectl get svc
NAME              TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
wordpress         NodePort    10.109.30.99   <none>        80:30130/TCP   148m

外部访问ceph集群

cluster.yaml里有配置,可配置成共享宿主机网络,这样外面可直接连接ceph集群:

代码语言:javascript
复制
network:
    # toggle to use hostNetwork
    hostNetwork: false

ceph集群监控

通过prometheus operator配合rook可以快速构建ceph集群的监控,sealyun安装包中已经自带了prometheus operator,所以直接干即可

启动ceph prometheus

注意这里是为ceph单独起了一个prometheus,这样做挺好,因为毕竟可以缓解prometheus单点的压力

cd cluster/examples/kubernetes/ceph/monitoring kubectl create -f service-monitor.yaml kubectl create -f prometheus.yaml kubectl create -f prometheus-service.yaml

然后我们的grafana在30000端口,先在grafana上添加数据源

数据源要配置成:

1

http://rook-prometheus.rook-ceph.svc.cluster.local:9090

导入dashboard

还有几个别的dashboard可以导入: Ceph - Cluster Ceph - OSD Ceph - Pools

再次感叹生态之强大

增加节点,删除节点

1

kubectl edit cephcluster rook-ceph -n rook-ceph

把useAllNodes设置成false,然后在nodes列表里增加节点名即可,保存退出后会自动增加ceph节点

nodes: - config: null name: izj6c3afuzdjhtkj156zt0z resources: {} - config: null name: izj6cg4wnagly61eny0hy9z resources: {} - config: null name: izj6cg4wnagly61eny0hyaz resources: {} useAllDevices: false

删除同理,直接edit删除即可,十分强大

性能测试

这里着重说明测试方法,给出在我的场景下的测试结果,用户应当根据自己的场景进行自己的测试。

测试环境

我这里使用阿里云服务器,挂载了一个1000G的磁盘,不过我实际测试时用的盘很少(盘大太慢)

[root@izj6c3afuzdjhtkj156zt0z ~]# df -h|grep dev devtmpfs 3.9G 0 3.9G 0% /dev tmpfs 3.9G 0 3.9G 0% /dev/shm /dev/vda1 40G 17G 21G 44% / /dev/vdb1 985G 41G 895G 5% /data /dev/rbd0 296G 2.1G 294G 1% /var/lib/kubelet/plugins/ceph.rook.io/rook-ceph-system/mounts/pvc-692e2be3-2434-11e9-aef7-00163e01e813

可看到一个本地盘和一个ceph挂过来的盘

先搞个fio的镜像

[root@izj6c3afuzdjhtkj156zt0z fio]# cat Dockerfile FROM docker.io/centos:7.6.1810 RUN yum install -y fio

测试容器,稍微改一下mysql的yaml:

代码语言:javascript
复制
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mysql-pv-claim
  labels:
    app: wordpress
spec:
  storageClassName: rook-ceph-block
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 300Gi
---
apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: wordpress-mysql
  labels:
    app: wordpress
spec:
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: wordpress
        tier: mysql
    spec:
      containers:
      - image: fio:latest
        imagePullPolicy: IfNotPresent
        command: ["sleep", "10000000"]
        name: mysql
        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
      volumes:
      - name: mysql-persistent-storage
        persistentVolumeClaim:
          claimName: mysql-pv-claim

测试过程

进入到容器内跑测试工具:

代码语言:javascript
复制
$ kubectl exec -it wordpress-mysql-775c44887c-5vhx9 bash

# touch /var/lib/mysql/test # 创建测试文件
# fio -filename=/var/lib/mysql/test -direct=1 -iodepth=128 -rw=randrw -ioengine=libaio -bs=4k -size=200G -numjobs=8 -runtime=1

结果:

Rand_Write_Testing: (g=0): rw=randrw, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T) 4096B-4096B, ioengine=libaio, iodepth=128 ... fio-3.1 Starting 2 processes Rand_Write_Testing: Laying out IO file (1 file / 2048MiB) Jobs: 2 (f=2): [m(2)][100.0%][r=16.6MiB/s,w=17.2MiB/s][r=4240,w=4415 IOPS][eta 00m:00s] Rand_Write_Testing: (groupid=0, jobs=2): err= 0: pid=34: Wed Jan 30 02:44:18 2019 read: IOPS=3693, BW=14.4MiB/s (15.1MB/s)(1443MiB/100013msec) slat (usec): min=2, max=203952, avg=262.47, stdev=2107.16 clat (msec): min=3, max=702, avg=30.85, stdev=30.97 lat (msec): min=3, max=702, avg=31.11, stdev=31.21 clat percentiles (msec): | 1.00th=[ 12], 5.00th=[ 14], 10.00th=[ 16], 20.00th=[ 18], | 30.00th=[ 20], 40.00th=[ 22], 50.00th=[ 24], 60.00th=[ 27], | 70.00th=[ 30], 80.00th=[ 36], 90.00th=[ 46], 95.00th=[ 64], | 99.00th=[ 194], 99.50th=[ 213], 99.90th=[ 334], 99.95th=[ 397], | 99.99th=[ 502] bw ( KiB/s): min= 440, max=12800, per=49.98%, avg=7383.83, stdev=3004.90, samples=400 iops : min= 110, max= 3200, avg=1845.92, stdev=751.22, samples=400 write: IOPS=3700, BW=14.5MiB/s (15.2MB/s)(1446MiB/100013msec) slat (usec): min=2, max=172409, avg=266.11, stdev=2004.53 clat (msec): min=7, max=711, avg=37.85, stdev=37.52 lat (msec): min=7, max=711, avg=38.12, stdev=37.72 clat percentiles (msec): | 1.00th=[ 16], 5.00th=[ 19], 10.00th=[ 21], 20.00th=[ 23], | 30.00th=[ 25], 40.00th=[ 27], 50.00th=[ 29], 60.00th=[ 32], | 70.00th=[ 36], 80.00th=[ 42], 90.00th=[ 53], 95.00th=[ 73], | 99.00th=[ 213], 99.50th=[ 292], 99.90th=[ 397], 99.95th=[ 472], | 99.99th=[ 600] bw ( KiB/s): min= 536, max=12800, per=49.98%, avg=7397.37, stdev=3000.10, samples=400 iops : min= 134, max= 3200, avg=1849.32, stdev=750.02, samples=400 lat (msec) : 4=0.01%, 10=0.22%, 20=22.18%, 50=68.05%, 100=5.90% lat (msec) : 250=3.09%, 500=0.54%, 750=0.02% cpu : usr=1.63%, sys=4.68%, ctx=311249, majf=0, minf=18 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=100.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.1% issued rwt: total=369395,370084,0, short=0,0,0, dropped=0,0,0 latency : target=0, window=0, percentile=100.00%, depth=128Run status group 0 (all jobs): READ: bw=14.4MiB/s (15.1MB/s), 14.4MiB/s-14.4MiB/s (15.1MB/s-15.1MB/s), io=1443MiB (1513MB), run=100013-100013msec WRITE: bw=14.5MiB/s (15.2MB/s), 14.5MiB/s-14.5MiB/s (15.2MB/s-15.2MB/s), io=1446MiB (1516MB), run=100013-100013msecDisk stats (read/write): rbd0: ios=369133/369841, merge=0/35, ticks=4821508/7373587, in_queue=12172273, util=99.93%

在宿主机上测试:

$ touch /data/test $ fio -filename=/data/test -direct=1 -iodepth=128 -rw=randrw -ioengine=libaio -bs=4k -size=2G -numjobs=2 -runtime=100 -group_reporting -name=Rand_Write_Testing

Rand_Write_Testing: (g=0): rw=randrw, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T) 4096B-4096B, ioengine=libaio, iodepth=128 ... fio-3.1 Starting 2 processes Rand_Write_Testing: Laying out IO file (1 file / 2048MiB) Jobs: 2 (f=2): [m(2)][100.0%][r=19.7MiB/s,w=19.8MiB/s][r=5043,w=5056 IOPS][eta 00m:00s] Rand_Write_Testing: (groupid=0, jobs=2): err= 0: pid=13588: Wed Jan 30 10:41:25 2019 read: IOPS=5024, BW=19.6MiB/s (20.6MB/s)(1963MiB/100019msec) slat (usec): min=2, max=80213, avg=191.32, stdev=2491.48 clat (usec): min=1022, max=176786, avg=19281.58, stdev=23666.08 lat (usec): min=1031, max=176791, avg=19473.50, stdev=23757.08 clat percentiles (msec): | 1.00th=[ 3], 5.00th=[ 4], 10.00th=[ 5], 20.00th=[ 6], | 30.00th=[ 7], 40.00th=[ 8], 50.00th=[ 9], 60.00th=[ 10], | 70.00th=[ 12], 80.00th=[ 25], 90.00th=[ 67], 95.00th=[ 73], | 99.00th=[ 81], 99.50th=[ 85], 99.90th=[ 93], 99.95th=[ 96], | 99.99th=[ 104] bw ( KiB/s): min= 9304, max=10706, per=49.99%, avg=10046.66, stdev=243.04, samples=400 iops : min= 2326, max= 2676, avg=2511.62, stdev=60.73, samples=400 write: IOPS=5035, BW=19.7MiB/s (20.6MB/s)(1967MiB/100019msec) slat (usec): min=3, max=76025, avg=197.61, stdev=2504.40 clat (msec): min=2, max=155, avg=31.21, stdev=27.12 lat (msec): min=2, max=155, avg=31.40, stdev=27.16 clat percentiles (msec) | 1.00th=[ 7], 5.00th=[ 9], 10.00th=[ 10], 20.00th=[ 11], | 30.00th=[ 13], 40.00th=[ 14], 50.00th=[ 15], 60.00th=[ 18], | 70.00th=[ 48], 80.00th=[ 68], 90.00th=[ 75], 95.00th=[ 80], | 99.00th=[ 88], 99.50th=[ 93], 99.90th=[ 102], 99.95th=[ 104], | 99.99th=[ 112] bw ( KiB/s): min= 9208, max=10784, per=49.98%, avg=10066.14, stdev=214.26, samples=400 iops : min= 2302, max= 2696, avg=2516.50, stdev=53.54, samples=400 lat (msec) : 2=0.04%, 4=3.09%, 10=34.76%, 20=33.31%, 50=5.05% lat (msec) : 100=23.67%, 250=0.08% cpu : usr=1.54%, sys=5.80%, ctx=286367, majf=0, minf=20 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=100.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.1% issued rwt: total=502523,503598,0, short=0,0,0, dropped=0,0,0 latency : target=0, window=0, percentile=100.00%, depth=128Run status group 0 (all jobs): READ: bw=19.6MiB/s (20.6MB/s), 19.6MiB/s-19.6MiB/s (20.6MB/s-20.6MB/s), io=1963MiB (2058MB), run=100019-100019msec WRITE: bw=19.7MiB/s (20.6MB/s), 19.7MiB/s-19.7MiB/s (20.6MB/s-20.6MB/s), io=1967MiB (2063MB), run=100019-100019msecDisk stats (read/write): vdb: ios=502513/504275, merge=0/658, ticks=4271124/7962372, in_queue=11283349, util=92.48%

这里看到随机读写性能损失约 27%多,这个结论并没有太多参考意义,用户应当根据自己实际场景进行测试

改用ceph共享宿主机网络模式进行测试,结果差不多,并无性能提升

要想排除在容器内测试因素的影响,也可以直接在宿主机上对块设备进行测试,做法很简单,可以把块挂到别的目录上如:

umount /dev/rbd0 mkdir /data1 mount /dev/rbd0 /data1 touch /data1/test # 然后对这个文件测试,我这边测试结果与容器内差不多

bluestore方式

直接使用裸盘而不使用分区或者文件系统的方式部署ceph

代码语言:javascript
复制
storage:
  useAllNodes: false
  useAllDevices: false
  deviceFilter:
  location:
  config:
    storeType: bluestore
  nodes:
  - name: "ke-dev1-worker1"
    devices:
    - name: "vde"
  - name: "ke-dev1-worker3"
    devices:
    - name: "vde"
  - name: "ke-dev1-worker4"
    devices:
    - name: "vdf"

bluestore模式能显著提升ceph性能,我这边测试随机读写性能提升了8%左右

Rand_Write_Testing: (g=0): rw=randrw, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T) 4096B-4096B, ioengine=libaio, iodepth=128 ... fio-3.1 Starting 2 processes Rand_Write_Testing: Laying out IO file (1 file / 2048MiB) Jobs: 2 (f=2): [m(2)][100.0%][r=16.4MiB/s,w=16.7MiB/s][r=4189,w=4284 IOPS][eta 00m:00s]] Rand_Write_Testing: (groupid=0, jobs=2): err= 0: pid=25: Thu Jan 31 11:37:39 2019 read: IOPS=3990, BW=15.6MiB/s (16.3MB/s)(1566MiB/100464msec) slat (usec): min=2, max=246625, avg=239.16, stdev=1067.33 clat (msec): min=2, max=493, avg=27.68, stdev=16.71 lat (msec): min=2, max=493, avg=27.92, stdev=16.75 clat percentiles (msec): | 1.00th=[ 12], 5.00th=[ 15], 10.00th=[ 16], 20.00th=[ 18], | 30.00th=[ 20], 40.00th=[ 22], 50.00th=[ 24], 60.00th=[ 27], | 70.00th=[ 30], 80.00th=[ 35], 90.00th=[ 45], 95.00th=[ 54], | 99.00th=[ 74], 99.50th=[ 84], 99.90th=[ 199], 99.95th=[ 334], | 99.99th=[ 485] bw ( KiB/s): min= 2118, max=10456, per=50.20%, avg=8013.40, stdev=1255.78, samples=400 iops : min= 529, max= 2614, avg=2003.31, stdev=313.95, samples=400 write: IOPS=3997, BW=15.6MiB/s (16.4MB/s)(1569MiB/100464msec) slat (usec): min=3, max=273211, avg=246.87, stdev=1026.98 clat (msec): min=11, max=499, avg=35.90, stdev=18.04 lat (msec): min=12, max=506, avg=36.15, stdev=18.08 clat percentiles (msec): | 1.00th=[ 19], 5.00th=[ 22], 10.00th=[ 23], 20.00th=[ 26], | 30.00th=[ 28], 40.00th=[ 30], 50.00th=[ 33], 60.00th=[ 35], | 70.00th=[ 39], 80.00th=[ 44], 90.00th=[ 54], 95.00th=[ 63], | 99.00th=[ 85], 99.50th=[ 95], 99.90th=[ 309], 99.95th=[ 351], | 99.99th=[ 489] bw ( KiB/s): min= 2141, max=10163, per=50.20%, avg=8026.23, stdev=1251.78, samples=400 iops : min= 535, max= 2540, avg=2006.51, stdev=312.94, samples=400 lat (msec) : 4=0.01%, 10=0.10%, 20=16.63%, 50=73.71%, 100=9.25% lat (msec) : 250=0.22%, 500=0.09% cpu : usr=1.85%, sys=5.60%, ctx=366744, majf=0, minf=17 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=100.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.1% issued rwt: total=400928,401597,0, short=0,0,0, dropped=0,0,0 latency : target=0, window=0, percentile=100.00%, depth=128Run status group 0 (all jobs): READ: bw=15.6MiB/s (16.3MB/s), 15.6MiB/s-15.6MiB/s (16.3MB/s-16.3MB/s), io=1566MiB (1642MB), run=100464-100464msec WRITE: bw=15.6MiB/s (16.4MB/s), 15.6MiB/s-15.6MiB/s (16.4MB/s-16.4MB/s), io=1569MiB (1645MB), run=100464-100464msecDisk stats (read/write): rbd0: ios=400921/401817, merge=0/50, ticks=4341605/7883816, in_queue=12217335, util=99.96%

总结

分布式存储在容器集群中充当非常重要的角色,使用容器集群一个非常重要的理念就是把集群当成一个整体使用,如果你在使用中还关心单个主机,比如调度到某个节点,

挂载某个节点目录等,必然会导致不能把云的威力百分之百发挥出来。 一旦计算存储分离后,就可真正实现随意漂移,对集群维护来说是个极大的福音。

比如集群机器过保了需要下架,那么我们云化的架构因为所有东西无单点,所以只需要简单驱逐改节点,然后下架即可,不用关心上面跑的是什么业务,不管是有状态还是无

状态的都可以自动修复。 不过目前面临最大的挑战可能还是分布式存储的性能问题。 在性能要求不苛刻的场景下我是极推荐这种计算存储分离架构的。

常见问题

注意主机时间一定要同步

1

ntpdate 0.asia.pool.ntp.org

ceph cluster无法启动

报这个错误

$ kubectl logs rook-ceph-mon-a-c5f54799f-rd7s4 -n rook-ceph 2019-01-27 11:04:59.985 7f0a34a4f140 -1 rocksdb: Invalid argument: /var/lib/rook/mon-a/data/store.db: does not exist (create_if_missing is false) 2019-01-27 11:04:59.985 7f0a34a4f140 -1 rocksdb: Invalid argument: /var/lib/rook/mon-a/data/store.db: does not exist (create_if_missing is false) 2019-01-27 11:04:59.985 7f0a34a4f140 -1 error opening mon data directory at '/var/lib/rook/mon-a/data': (22) Invalid argument 2019-01-27 11:04:59.985 7f0a34a4f140 -1 error opening mon data directory at '/var/lib/rook/mon-a/data': (22) Invalid argument

需要把宿主机store.db文件删掉,然后delete pod即可, 主意别指错目录如果自己改了目录的话

1

rm -rf /var/lib/rook/mon-a/data/store.db

rook删除PVC PV依然存在

因为storageclass回收参数:

1

reclaimPolicy: Retain # 设置成Delete即可

rook-ceph namespace无法删除 cephclusters.ceph.rook.io CRD无法删除

[root@izj6c3afuzdjhtkj156zt0z ~]# kubectl get ns NAME STATUS AGE default Active 18h kube-public Active 18h kube-system Active 18h monitoring Active 18h rook-ceph Terminating 17h

把CRD metadata finalizers下面的内容删了,CRD就会自动删除,然后只要rook-ceph namespace里没有东西就会自动清理掉

1

$ kubectl edit crd cephclusters.ceph.rook.io

使用宿主机网络时集群无法正常启动

集群中单节点时把mon设置成1即可

代码语言:javascript
复制
  mon:
    count: 1
    allowMultiplePerNode: true

  network:
    # toggle to use hostNetwork
    hostNetwork: true
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-02-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 sealyun 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 安装
  • 使用
    • 创建pool
      • 创建pvc
      • 外部访问ceph集群
      • ceph集群监控
        • 启动ceph prometheus
          • 导入dashboard
          • 增加节点,删除节点
          • 性能测试
            • 测试环境
              • 测试过程
              • bluestore方式
              • 总结
              • 常见问题
                • ceph cluster无法启动
                  • rook删除PVC PV依然存在
                    • rook-ceph namespace无法删除 cephclusters.ceph.rook.io CRD无法删除
                      • 使用宿主机网络时集群无法正常启动
                      相关产品与服务
                      容器镜像服务
                      容器镜像服务(Tencent Container Registry,TCR)为您提供安全独享、高性能的容器镜像托管分发服务。您可同时在全球多个地域创建独享实例,以实现容器镜像的就近拉取,降低拉取时间,节约带宽成本。TCR 提供细颗粒度的权限管理及访问控制,保障您的数据安全。
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档